PoS - Proceedings of Science
Volume 395 - 37th International Cosmic Ray Conference (ICRC2021) - CRI - Cosmic Ray Indirect
Status and Prospects of the LHCf and RHICf experiments
H. Menjo*, O. Adriani, E. Berti, L. Bonechi, M. Bongi, R. D'Alessandro, G. Castellini, M. Haguenauer, Y. Itow, K. Kasahara, M. Kondo, Y. Matsubara, Y. Muraki, K. Ohashi, P. Papini, S. Ricciarini, T. Sako, N. Sakurai, K. Sato, Y. Shimizu, T. Tamura, A. Tiberio, S. Torii, A. Tricomi, W.C. Turner, M. Ueno, K. Yoshida, Y. Goto, B. Hong, M. Kim, I. Nakagawa, R. Seidl and K. Tanidaet al. (click to show)
Full text: pdf
Pre-published on: July 06, 2021
Published on:
Precise understanding of hadronic interactions at high energies is a key to improve mass composition measurements of very high energy cosmic-rays and to solve the muon excess issue observed in high energy cosmic-ray experiments using an air-shower technique. The LHCf and RHICf experiments measures the differential production cross sections of very forward neutral particle as photons, neutral pions and neutrons at LHC and RHIC, respectively. These data are critically important to test and tune hadronic interaction models used for air-shower simulations.

In this presentation, we introduce the recent results of both the experiments as well as our future operation plans. LHCf published an updated result of forward neutron measurement at pp, $\sqrt{s}$ = 13 TeV. From the observed neutron energy spectra, we also obtained the average inelasticity, which is one of the key parameters for air shower development, as 0.536 +0.031-0.037. In addition, several analysis are on-going; neutral pion measurement at pp, $\sqrt{s}$ = 13 TeV, central- forward correlation analysis with LHCf+ATLAS, photon measurement by RHICf.
LHCf plans to have operations at $pp$ and $p$O during the LHC-Run3 period. At pp collisions, new silicon readout system will be introduced to improve the read-out speed, and 10 times more statistics of the previous operation in 2015 will be obtained. Thanks to high statistics, rare particles such as $\eta$, $K^0_s$ and $\Lambda$ will be addressed also. We also plan another operation at RHIC in 2024 with a new detector. The detector, a calorimeter composed of tungsten, Si pad and pixel layers, will have a much wider acceptance and higher sensitivity of $K^0_s$ measurement than the current detector.
DOI: https://doi.org/10.22323/1.395.0301
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.