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1. Introduction

The Telescope Array (TA) experiment is the largest ultra high energy cosmic ray (UHECR)
observatory placed in Millard County, Utah, USA that aims to investigate the origin and properties
of UHECR[1]. The observatory consists of three fluorescence detector (FD) stations[2] that are
surrounding the surface detector (SD) arrays that cover an area of 700 km2[3]. A satellite photo-
graph of the observatory indicating the positions of each detector and the observatory’s location in
USA are shown in the Figure 1.

Figure 1: A satellite photograph of the Telescope Array observatory on a map of USA. The blue circles
indicate the position of each FD station. From north clockwise, Middle Drum (MD) station, Black Rock
Mesa (BRM) station, Long Ridge (LR) station. The red squares indicate the position of each SD of all 507
of them. The blue cross in the middle of the SD array indicates the position of Central Laser Facility (CLF).
credit - D. Bergman, Wikipedia

Recent researches suggest that the composition of the cosmic rays with the primary energy
of 1018.5 eV is dominated by lighter nuclei[4], while the composition of the cosmic rays becomes
heavier as the primary energy decreases to 1017 eV[5]. The transition might be caused by the
difference in their origins. In order to investigate this transition further, the precise measurements
of the energy spectrum and the depth of maximum shower development, -max is critical. To achieve
such precise observation, the hybrid reconstruction technique with the timing information of an SD
in proximity of the core of extensive air shower (EAS) is employed. By using the timing information
from the SD, it is possible to improve the accuracy in determination of shower geometry[6].
The TA collaboration implemented an external trigger system called "Hybrid trigger" in 2010. The
hybrid trigger is issued by an FD station for SD array when an FD detects a shower-like event.
This allows an SD subarray to collect the timing information from an extensive air shower with
the primary energy below 1018.5 eV, where the efficiency of SD autonomous trigger decreases
rapidly[3].
The energy threshold of the hybrid trigger system implemented in the MD station is different than
that of the system implemented in BRM station and LR station. This is mainly due to the different
distance between an FD station and a corresponding SD sub-array. Therefore, in this analysis, only
hybrid trigger events observed in BRM station and LR station are used.
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2. Monte Carlo study

To simulate the EAS events, and the detector response for the hybrid trigger system, the Tele-
scope Array collaboration has developed a dedicated Monte Carlo (MC) simulation framework.
This MC study is important to evaluate the performance of the hybrid trigger system. The con-
ditions and parameters used in the generation of theMCsimulation set are summarized in the Table 1.

Hybrid trigger MC generation conditions Parameters
Chemical composition Proton, Iron
Energy step logE = 0.1
Energy range 1017.5 eV to 1019.2 eV
Zenith angle 0 degree to 60 degree
EAS core position Inner 25 km radius from CLF
Atmospheric model GDAS[7]
Simulation period October 2010 to September 2014
Hadronic interaction model QGSJET-II-03
Missing energy estimation QGSJET-II-03 Proton

Table 1: Conditions and parameters used in the generation of the hybrid trigger MC.

In order to perform the reconstruction of hybrid trigger events, one SD is selected as the "anchor
SD" that provides the least j2 in the geometric reconstruction of the shower. In this analysis, we set
the threshold for an "anchor SD" to be 3 MIPs. This is to prevent the contamination in geometric
reconstruction caused by the chance particles.
Reconstruction results are filtered with the following criteria to obtain the results with high preci-
sion. This procedure is called "Quality cut" and the criteria used in this procedure are summarized
in the Table 2.

Quality cut items Conditions
Number of PMT with signal > 20
Length of track > 15 degree
Zenith angle < 57 degree
Minimum viewing angle > 20 degree
-max Bracketing -BC0AC < -max < -4=3
Additional volume cut -BC0AC < 550 g/2<2 , -4=3 > 850g/ 2<2

Table 2: Quality cut items and criteria used in the reconstruction of the hybrid trigger events. Minimum
viewing angle means the angle between the reconstructed shower axis and the FD.

One of the Quality cut criteria, Additional volume cut rejects the events with too deep obser-
vation start points (-BC0AC ) and the events with too shallow observation end points (-4=3). Since
those events have too little observed longitudinal development to reconstruct them precisely.
By comparing this filtered reconstruction results with the MC thrown parameters, it is possible to

3



P
o
S
(
I
C
R
C
2
0
2
1
)
3
0
5

TA Hybrid trigger analysis Heungsu Shin

estimate the reconstruction accuracy for the hybrid trigger events. The primary energy reconstruc-
tion accuracy, the depth of maximum shower development (-max) reconstruction accuracy, and the
arrival direction reconstruction accuracy are shown in the Figure 2.

(a) E0 bias and resolution (b) -max bias and resolution (c) Arrival direction accuracy

Figure 2: (a) The hybrid trigger reconstruction bias and resolution in primary energy E0 calculated by
ln(E0A42/E0B8<). Each distribution is fitted by a Gaussian distribution and f of the Gaussian distribution is
indicated as the error bars. (b) The hybrid trigger reconstruction bias and resolution in Xmax calculated by
Xmax A42 − Xmax B8< Each distribution is fitted by a Gaussian distribution and f of the Gaussian distribution
is indicated as the error bars. (c) The hybrid trigger reconstruction accuracy in Arrival direction indicated by
the data points in opening angle distributions that are placed at the 68% of the distributions from 0 degree.
All data points in the three sub-figures are shifted by -0.05 for proton and +0.05 for iron from the actual
primary energies for visibility.

The accuracy of the hybrid trigger reconstruction in arrival direction is better than 0.8 degree
with 68% of C.L. in the all simulated energy bins for both proton and iron.
The reconstruction biases in primary energy E0 differ with the composition and primary energy. For
the lower primary energy of 1017.5 eV, the bias is around ln(E0A42/E0B8<) = 0.08 for Proton, and
ln(E0A42/E0B8<) = −0.07 for Iron. The reconstruction bias in primary energy decreases as primary
energy increases. For the higher energy of 1019.2 eV, the bias is around ln(E0A42/E0B8<) = 0.02
for proton, and ln(E0A42/E0B8<) = −0.04 for iron. The positive bias means the primary energy is
overestimated in reconstruction and the negative bias means the primary energy is underestimated
in reconstruction.
The reconstruction biases in -max are within -5 g/2<2 to 7 g/2<2 for all primary energy bins and
compositions. The resolutions have the small energy dependence of 35 g/2<2 at the primary energy
of 1017.5 eV and 20 g/2<2 at the primary energy of 1019.2 eV.

3. Results

The hybrid trigger mode of FD operation started from October 8th 2010. Since the nature of
fluorescence detection method, it is important to choose the data acquired in only clear nights. In
this analysis, the method of visual confirmation of the cloud in the sky, called "WEAT code" is
employed. From October 2010 to June 2019, BRM station recorded 3,297 hours and LR station
recorded 2,900 hours of analyzable live time that makes total 6,197 hours of hybrid trigger obser-
vation.
For the first 4 years of observation, the total number of the hybrid trigger events after applying the
quality cuts shown in the Table 2 and the aforementioned WEAT code is 2,774 events and 2,769
events for the BRM station and the LR station respectively that makes total 5,543 events. The
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energy distribution of the 5,543 hybrid trigger events is shown in the Figure 3-(a).
The hybrid trigger observation’s BRM+LR total exposure for the proton and iron primary is calcu-
lated from the aperture, and the integrated observation time. The aperture of hybrid trigger for a
certain energy bin AΩ(�) can be written as,

AΩ(�) = #A42 (�)
#B8<(�)

× A0Ω0 (1)

where #A42 (�) is the number of reconstructed MC events in the energy bin after quality cut,
#B8<(�) is the number of simulated MC events in the energy bin. A0 represents the effective area
that is determined by the maximum impact parameter, and Ω0 represents the solid angle that is
determined by the maximum zenith angle. Therefore the total exposure for a certain energy bin is
AΩ(�)T, where T is the detector live time.
The first 4 years of hybrid trigger observation’s BRM+LR total exposure for proton and iron primary
is calculated and shown in the Figure 3-(b).

(a) E0 distribution for reconstructed
events in 4 years observation.

(b) Combined exposure for proton and iron in 4 years observation.

Figure 3: (a) The distribution of the number of reconstructed events for the first 4 years of hybrid trigger
operation. Quality cuts and weather cuts are applied. The blue line indicates the events from BRM station,
the red line indicates the events from LR station, the black line indicates the sum of both stations. (b) The
combined exposure of BRMandLR stations for the first 4 years of observation as a function of energy. The red
circles indicate the exposure for proton primary, and the blue squares indicate the exposure for iron primary.
The purple crosses indicate the combined exposure where the HiRes and HiRes/MIA composition[8] is
considered.

The spectrum of hybrid trigger observation is estimated by calculating the fluxes of cosmic
rays for each energy bin. This can be written as,

J(E) = N(E)
AΩ(E)TΔE

(2)

where N(E) is the number of observed cosmic rays, and ΔE is the size of energy bin. The calculated
spectrum of hybrid trigger observation for the first 4 years with the pure proton assumption is shown
in the Figure 4-(a). In order to see the fine structure of the spectrum better, E3J(E) flux is also
shown with the spectrum measurement result by FD monocular observation in the Figure 4-(b).
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(a) Hybrid trigger spectrum J(E) in 4 years ob-
servation

(b) Hybrid trigger spectrum E3J(E) in 4 years
observation with the spectrum measured by TA
monocular in 7 years observation[9].

Figure 4: (a) The combined 4 years J(E) spectrum measured by the hybrid trigger. HiRes and HiRes/MIA
composition was assumed. Error bars indicate the

√
N statistical error. (b) The combined 4 years E3J(E)

spectrum measured by the hybrid trigger with the combined 7 years E3J(E) spectrum measured by the TA
monocular. Hybrid trigger spectrum measurement in red dots. TA monocular spectrummeasurement in blue
dots. Error bars indicate indicate the

√
N statistical error. The same HiRes and HiRes/MIA composition was

assumed for both.

The depth of maximum shower development, -max is an important observable for studying the
composition of UHECR. The distributions of reconstructed -max of the proton and iron MC sets
generated in the Section 2 were compared with the distribution of reconstructed -max of the 4 years
of observation data. Elongation rate of the observation data set and reconstructed MC set are also
compared and shown in the Figure 5. As can be seen from the distributions shown in the Figure
5-(a), it is shown that the -max distribution of 4 years observation data set is placed in between that
of proton MC distribution and iron MC distribution. The elongation rate shown in the Figure 5-(b)
indicates the existence of composition shift in the energy range from 1017.5 eV to 1019.2 eV.

4. Conclusion

The TA hybrid trigger has been operating since October 2010 and recorded total 6,200 hours of
observation with the BRM station and the LR station. The MC study shows that the primary energy
resolutions ln(E0A42/E0B8<) are estimated around 0.1 to 0.2 in the energy range from 1017.5 eV to
1019.2 eV. The -max resolutions are estimated around 20 g/2<2 to 35 g/2<2 in the above energy
range. The preliminary hybrid trigger aperture has been estimated as well as the preliminary
hybrid trigger spectrum. The preliminary result of measurement of the depth of maximum shower
development indicates that the observed -max is between the -max of Proton MC and the Iron MC
at the lower energy region. Then the observed -max result gradually shifts to the -max of Proton
MC as the primary energy increases.
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(a) -max distributions of the reconstructed MC
sets and the 4 years observation data set.

(b) Elongation rate plot of the reconstructedMC sets and the
4 years observation data set.

Figure 5: (a) The distributions of reconstructed -max for proton MC, iron MC, and observation data. The
red dots indicate the proton MC reconstruction. The blue dots indicate the iron MC reconstruction. The
black dots indicate the observation data reconstruction. Error bars represent the statistical error. (b) The
elongation rate plot of the same data. The red line indicates a linear fit for the proton MC reconstruction data
points that are indicated as red dots. The blue line indicates a linear fit for the iron MC reconstruction data
points that are indicated as blue dots. Error bars represent the statistical error.
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