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We test the hypothesis of an anisotropy laying along the galactic plane which depends on the
mass of primary cosmic-rays. The sensitivity to primary mass is provided by the depth of shower
maximum, -max, from hybrid events measured at the Pierre Auger Observatory. The 14 years of
available data are split into on- and off-plane regions using the galactic latitude of each event to
form two distributions in -max, which are compared using the Anderson-Darling 2-samples test.
A scan over a subset of the data is used to select an optimal threshold energy of 1018.7 eV and
a galactic latitude splitting at |1 | = 30◦, which are then set as a prescription for the remaining
data. With these thresholds, the distribution of -max from the on-plane region is found to have
a 9.1 ± 1.6+2.1−2.2 g/cm

2 shallower mean and a 5.9 ± 2.1+3.5−2.5 g/cm
2 narrower width than that of the

off-plane region. These differences are as such to indicate that the mean mass of primary particles
arriving from the on-plane region is greater than that of those coming from the off-plane region.
Monte-Carlo studies yield a 4.4f post-penalization statistical significance for the independent
data. Including the scanned data results in a 4.9+1.4−1.5 f post-penalization statistical significance,
where the uncertainties are of systematic origin. Accounting for systematic uncertainties leads
to an indication for anisotropy in mass composition above 1018.7 eV at a confidence level of
3.3f. The anisotropy is observed independently at each of the four fluorescence telescope sites.
Interpretations of possible causes of the observed effect are discussed.
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1. Introduction
The energy spectrum of ultra-high-energy cosmic rays, UHECRs, undergoes a hardening at

5 EeV called the ankle [1]. Above this energy, the flux has long been thought to be primarily
extragalactic in origin [2]. Observation confirmed this through the recent discovery of a dipole
anisotropy in the arrival directions of UHECRs with energies slightly above the ankle (� > 8 EeV)
[3]. This is further supported by evidence of anisotropies occurring near the flux suppression at
around 40 EeV [4]. Above the ankle, the mass composition of UHECRs is also best described as
consisting of a mix of light, intermediate and high-mass primaries [5, 6]. A mixed composition
in turn implies that, at fixed energies, each species will undergo differing deflections in magnetic
fields. Additionally, due to energy-loss effects which depend on primary mass and charge, at a fixed
energy the horizon of each species, and therefore potentially their source distributions, differ [7].
These give rise to the possibility of mass dependent anisotropies in the UHECR flux.

More specifically, simulation using both the Jansson-Farrar, JF12 [8], and the Pshirkov,
Tinyakov and Kronberg, PTK11 [9], models of the Galactic Magnetic Field, GMF, have shown
that around a rigidity of ∼ 6 EV, the propagation of UHECRs in the GMF transitions from diffusive
to ballistic [10]. From this, it is clear that as energy increases, the lighter, less charged, components
of the flux will reach this threshold first, and therefore can be expected to display some degree
of their source anisotropy in their local arrival directions. The heavier species however, would
maintain a more isotropic distribution until much higher energies. Simulations with both JF12 and
PTK11 also show that the GMF obscures and displaces the images of sources which lie behind the
disc of the Milky Way [11]. This means that, over a wide range of energies, both light and heavy
anisotropic patterns from sources along the Galactic Plane, GP, would be washed out, leaving only
the isotropized heavy component from out-of-GP sources to contaminate observations made along
the GP. This suggests a heavier GP composition may be observed if indeed extragalactic sources
are distributed in an anisotropic manner and UHECR composition is mixed.

To test this scenario, we use an extended dataset of -max measurements obtained by the
methods discussed in [5, 12, 13]. We then tailor the analysis to make distinct measurements of the
distributions of -max for events observed coming from galactic latitudes near-to, on, and far-from,
off, the galactic plane. A scan over 54% of the data, which was 100% of the available data at the
start of the study in 2016, is used to determine the optimal lower energy threshold and galactic
latitude to split the data into on- and off-plane subsamples. These thresholds are set as a prescription
and applied to the available data to create distributions of -max for both regions which are compared
using the Anderson-Darling 2-samples test. The significance of the result is then quantified via
Monte-Carlo duplication of the analysis/scan on many randomized skies.

2. Reconstruction, selection and analysis
The same methods of hybrid reconstruction, selection, and analysis adopted for the ICRC 2019

report [12] have been used here on data taken between 01/12/2004 and 31/12/2018. A fully detailed
description of these methods can be found in [13]. The fiducial field of view selection, FidFoV,
described therein, is particularly important to this analysis. This is because the FidFoV selection
constrains observations of the Fluorescence Detector, FD, to only the detector volume where the
measurement of -max is ensured to be unbiased by detector and selection efficiencies. The only
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notable difference is that, in this analysis, only events with � > 1018.4 eV are considered, as above
this energy the composition is well mixed and expected to be primarily of extragalactic origin [6].
This reconstruction and selection procedure results in 7572 high quality events.

After the optimization scan described later, the on-plane sample is defined as the center third
of the sky by galactic latitude (−30◦ ≤ 1 ≤ 30◦) with the off-plane region being the complement
of this sample. This results in 3709 events on-plane, and 3863 events off-plane. As can be seen in
Figure 1, this on/off splitting does not introduce significant differences between the zenith angles,
shower distances, or atmospheric aerosol conditions of the events in the on- and off-plane samples.
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Figure 1: Zenith, core distance, and atmospheric aerosol content for the on- and off-plane datasets.

Distributions of Xmax and arrival direction Due to measurement effects, the observed -max
distribution, 5obs(- rec

max), does not quite represent the true -max distribution of all cosmic rays
landing within the Observatory, 5 (-max). As stated in [13], this difference can be described as

5obs(- rec
max) = �(- rec

max) +
∫ ∞

0

[
5 (-max) n (-max)'(- rec

max − -max)
]
3-max , (1)

where: n (-max) is the probability an event will survive to the final dataset based on its -max, and
'(- rec

max − -max), �(- rec
max) are the resolution of, and the bias on, the reconstructed -max value.

To determine n , ', and �, CONEX [14] is used with Sibyll-2.3 [15] to generate showers. These
simulated showers are then thrown isotropically into so-called RealMC detector simulations which
include the evolving state of the detector over the analyzed 14-year period [16]. As a result, they
include the up-time, trigger efficiency, and measurement conditions of the real Observatory and
accurately model the exposure and geometries of events arriving from both regions of the sky.

The simulated hybrid events are then used to determine n from the fraction of events thrown
in each -max and energy bin that survive reconstruction and selection. When this procedure is
applied to the on- and off-plane regions, the difference in n seen between the regions is comparable
to the uncertainty in the method. After FidFoV cuts, only 1.4 % of events require acceptance
correction, which means that these small differences in n have a negligible impact on the end result
(< 0.1 g/cm2). Nonetheless, the acceptance of each region is separately corrected using the ‘up-
weighting method’ outlined in [13]. Both ' and �, on the other hand, are determined by comparing
the reconstructed -max value of each simulated shower to its Monte-Carlo truth. Using this method,
� and ' for the two regions are found to agree within errors, but are also corrected for separately.

Systematic uncertainties Because the events from both regions are geometrically similar and are
measured by the same detectors every night, most of the systematic effects listed in [13] will apply
equally to them. These will therefore cancel out in comparisons between the on- and off-plane
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samples. Furthermore, from the acceptance, resolution, and bias studies, it has been shown that
the two regions are also free from selection and reconstruction biases. The systematic sources

Source
Uncertainty [g/cm2] of
Δ〈-max〉 Δf(-max)

n correction +1.14
−0.71

+2.37
−1.61

� correction ±0.36 ±0.01
' correction 0 +1.78

−0.24
Seasonal +1.00

−1.53
+1.19
−1.23

Instrumentation ±1.41 ±1.41

Sum in Quadrature +2.10
−2.23

+3.49
−2.48

Table 1: Summary of systematic uncertainties.

which remain are potential seasonal effects,
differences between the instrumentation at
fluorescence telescope sites, FD-sites, and
the residual uncertainties from the accep-
tance, bias, and resolution corrections. Table
1 summarizes the impacts these uncertainty
sources have on a comparison of the first and
second moments of the on- and off-plane dis-
tributions of -max as determined using their
maximum observed effects on data.

3. Testing for anisotropy
A test statistic, TS, is required to quantify how much the distributions of -max from the on-

and off-plane regions meaningfully differ. The Anderson-Darling 2-Samples homogeneity test [17],
AD-test, is well suited to this task as its TS scales with the degree of dissimilarity between the tested
distributions. The AD-test is selected over alternatives as it has good sensitivity to the full width
of a distribution [18], and has been shown to have more power than the Kolmorogov-Smirnov test
when applied to non-symmetric distributions, while remaining robust against false positives [19].

To use the AD-test, the events in each region need to be collected into common distributions
to be compared. However, the -max of a shower naturally grows with primary energy, which needs
to be accounted for. Accordingly, the mean -max of iron predicted by EPOS-LHC [20] is removed
from each event using its reconstructed energy, �rec. This results in a normalized -max value

-
′
max = -max −

(
649 + 63.1 log10

(
�rec/EeV

)
+ 1.97 log10

(
�rec/EeV

)2
)

︸                                                                      ︷︷                                                                      ︸
EPOS-LHC elongation rate for iron

. (2)

The effects of the specific choice of model used in the normalization have been checked and were
found to shift Δ〈- ′max〉 by < 0.02 g/cm2. Lastly, since we are testing for a heavier on-plane sample,
the hypothesis is only confirmed if 〈- ′onmax〉 < 〈- ′offmax〉. Since the AD-test is not sensitive to which
tested distribution has a higher mean, if 〈- ′onmax〉 > 〈- ′offmax〉 the TS is set to −3 making refutation easy
to identify, as −3 is below the minimum of the AD-test.
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Figure 2: Parameter scan over 54% of the data.

Scan for optimal thresholds A data driven ap-
proach is undertaken to select the most signifi-
cant energy threshold and galactic latitude open-
ing angle. First the data is split into two datasets:
the scan-dataset which consists of the 54% of the
data recorded before 01/01/2013, and the post-scan-
dataset which is the remaining 46% of the data. A
coarse scan of 5◦ steps in |1 | from 20◦ to 35◦ and
0.1 lg(�/eV) steps in energy from 18.4 to 19.4 lg(�/eV) is then performed on the scan-dataset.
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The results of this scan are displayed in Figure 2 and show a shallower on-plane 〈- ′max〉 for all tested
thresholds. A maximum TS of 8.4 occurs at a 30◦ splitting latitude and a cutoff energy of 1018.7 eV.
This |1 | ≤ 30◦ splitting of the data above 1018.7 eV is set as a prescription. When applied to the
post-scan-dataset, the on-/off-plane - ′max difference is independently confirmed with a TS of 12.6.
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Figure 3: The on- and off-plane distributions of
shower -max from all data.

Finally, when the thresholds are applied to the full
data range together, a TS of 21.0 is found.

As seen in Figure 3, the on-plane distribution
from the tested data displays a mean - ′max which
is 9.1 ± 1.6+2.1−2.2 g/cm

2 shallower and a width which
is 5.9 ± 2.1+3.5−2.1 g/cm

2 narrower than that of the off-
plane region. These factors together are indicative
of primaries from the on-plane region having on av-
erage a heavier mass. The evolution of the signal TS
vs. time, with a linear fit, can be seen in Figure 4. A
growth of the signal, at roughly a rate of 1.3 TS yr−1

is visible over the duration of data taking†.

Statistical significance The TS values found are converted to a statistical significance via typical
Monte-Carlo methods performed on randomized trial skies built using the real data. Each trial sky
is constructed by decoupling the arrival direction from the energy and n , ', and � corrected - ′max
values of each event, and then randomly re-pairing them. This method ensures a fair test of the
significance of the latitude splitting, while maintaining the real underlying distributions of -max
and energy as well as the true sky exposure. At this point, the above described analysis is applied
to each trial sky and a TS for that sky is extracted for comparison to the result observed in data.

To calculate the significance of the post-scan result, the 1018.7 eV threshold energy and |1 | ≤ 30◦

latitude splitting is applied to trial skies built using the post-scan-dataset. The TS values observed
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Figure 4: The time evolution of the TS with signif-
icance indicated on the right. The shaded region is
preliminary data available too late for full analysis.
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Figure 5: The Monte-Carlo determination of the
post-scan (red) and all-data (blue) significance with
1 and 10 billion randomized skies, respectively.

†Figure 4 also shows preliminary reconstructions of the data taken during 2019 in the shaded region. The recon-
structions are still in an early state and were made available too late for full inclusion in the analysis. When added, a
3.7/4.4f (post-scan/all data) statistical significance is expected. The best fit rate of growth of 1.3 TS/yr however remains
unchanged indicating the behavior of the data taken 2019 is within expectations of the long term trends.
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in 1 billion such MC trials is illustrated by the red histogram in Figure 5. With 5865 more extreme
skies seen, the probability of the post-scan TS of 12.6 arising by chance is found to be 5.87× 10−6,
which corresponds to a significance of 4.4f, strongly confirming the result of the scan.

To calculate the significance of the all-data result, the full dataset is used to create trial skies
over which the above described scan is performed, imposing a heavy penalization. From this scan
the optimal energy and latitude thresholds are extracted for each sky which is then applied to the
full dataset. The TS values observed in 10 billion such MC trials is illustrated by the blue histogram
in Figure 5. With 5964 more extreme skies seen, the post-penalization probability of the all-data
TS of 21.0 arising by chance is 5.96 × 10−7, which corresponds to a significance of 4.9f.

Confidence level considering systematic uncertainties The observedΔ〈- ′max〉 of 9.1±1.6 g/cm2

exceeds the 2.2 g/cm2 systematic uncertainty listed in Table 1 by a factor of 4.1, while the observed
Δf

(
- ′max

)
of 5.9 ± 2.9 g/cm2 exceed its 2.5 g/cm2 systematic uncertainty by a factor of 2.4. To

quantify the impact of these systematic uncertainties on the result significance, a two step approach
is taken. First, the on-/off-plane difference is reduced by 1fsys by adding a shift obtained by
sampling from a Gaussian distribution with ` = 2.2 g/cm2 and f = 2.5 g/cm2 to the on-plane
sample. Then, the AD-test is applied to the resulting on- and off-plane distributions. Repeating this
process 1 million times results in a mean TS of 11.3 ± 0.5. From Figure 5, this corresponds to at
least 3.3f. The same procedure is performed with the other side of the systematic errors, which
increases the significance to 6.3f. To be conservative, the lower bound of 3.3f is adopted as the
confidence level for an astrophysical cause of the result.

Results by zenith angle and FD-site If the anisotropy is astrophysical, then it should exist in the
data of each FD-site and zenith angle, \, separately. To test this, the on- and off-plane samples are
separated by observing FD-site. For stereo-events, those measured at more than one FD-site, the
site with the largest number of triggered pixels is used. Δ〈- ′max〉 is then calculated in bins of cos2 \.

Figure 6 shows that the difference in -max is present at all zenith angles and sites independently.
Furthermore, when the response of each site is split in cos2 \ bins, it appears in 22 out of the 28 tested.
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Figure 6: Δ〈- ′max〉 by FD-site and zenith

Because the FoV of each site is rotated by roughly
90 ◦ with respect to each other, this independent con-
firmation at all sites and nearly all zeniths is a strong
indication that systematics are not a primary cause
of the anisotropy. For some zeniths, the Los Mora-
dos FD-site, LM, has a larger difference compared
to the other sites. Studies using stereo events do not
show any evidence of an on/off-plane bias in LM.
Even so, if the data from LM is entirely omitted
from the analysis, the remaining 74% of the data are
still significant to at-least the ∼ 3.3f level.

4. Exploratory results and discussion
The first two moments of -max for both regions are shown in Figure 7. The predicted -max

moments for pure iron and protons using EPOS-LHC are also shown. The two regions are well
separated in 〈-max〉 and f (-max) in nearly all bins above 18.7 lg(�/eV). As a lighter composition
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is expected to be both deeper in 〈-max〉 and wider in f (-max), this correlated difference in the first
two moments indicates that the on-plane region has a heavier mean mass than that of the off-plane
region above 1018.7 eV. This behavior over a wide range in energy is in line with the prediction from
the hypothesis and would be highly unlikely to occur by chance in this many independent bins.
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Figure 7: The -max moments of the on- and off-plane regions.

Composition map In Figure 8, a map of the relative composition of cosmic rays above 1018.7 eV
is shown. The I-axis of the map is a new TS which describes the degree to which the composition of
primaries measured within a 30◦ top-hat centered at that point differ from those measured over the
rest of the sky. In this map, positive values (red) indicate a lighter mean mass than the surrounding
sky, while negative values (blue) indicate a heavier mean mass. The specific TS is obtained by
applying Welch’s t-test [21] to the distributions of - ′max formed by the in-hat and out-of-hat events.
The energy normalization of - ′max removes the effects of spectral features, and, because Welch’s
t-test naturally includes the statistics of each sample, the effects of exposure are accounted for.

In contrast to the on/off analysis, the mapping technique analyzes small, distinct regions of the
sky. Because the corrections for n , ', and � need to apply equally well to all arrival directions,
the on-/off-parameterizations from Section 2 are not used. Instead, since the local geometry has a
time independent relationship with arrival declination, declination dependent parameterizations of
n , ', and � are used∗. Therefore the visible galactic plane in Figure 8 is not due to n , ', � or their
correction, as declination dependent effects appear as radial patterns centered on −57◦ ℓ,−27◦ 1.

Discussion The result is principally a model independent verification of a mixed composition
above the ankle. The analysis provides an indication that the galactic magnetic field could have
an observable impact on mass-dependent anisotropies. Nonetheless, the presented analysis does
not necessarily support a causal relationship with the galactic plane, as the different horizons
probed with different nuclear species at a given energy could also result in composition-dependent
anisotropic patterns. Along this line of thought, alternative scenarios are being explored.

∗Declination dependent corrections result in larger systematic uncertainties due to an additional dimension in the
parameterization and low statistics at high/low declination. This makes them ill suited to the on/off study. Regardless,
the usage of these corrections only changes the on/off comparison by +0.1 g/cm2
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Figure 8: Sky map of comic ray composition for � ≥ 1018.7 eV

It is important to note that information relating to the longitudinal development of showers is
available from the study of data from the surface detector. From the most detailed study carried
out thus far, which uses the mean rise-time of the surface detector stations participating in an event,
the precision of the -max measurement for an individual event is much poorer (±60 g/cm2) than
from the fluorescence technique (∼ 16 g/cm2) [22]. However, current work using the concept of
Universality[23] and/or deep-learning techniques [24] can produce resolutions as low as 25 g/cm2.
Tests of the on-/off-plane differencewith thesemethods are planned andwill be reported elsewhere.
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