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1. Introduction

IceCube is a cubic-kilometer astroparticle detector at the geographic South Pole, with over
5000 digital optical modules (DOMs) on 86 strings deployed in the glacial ice at depths between
1450m and 2450m [1]. Reconstruction of the direction, energy and identity of penetrating particles
at IceCube relies on the optical detection of Cherenkov radiation emitted in the surrounding ice.
Additional to the in-ice (IC) array, the detector has a surface component, called IceTop (IT) [2]. At
the center of the array, the IC strings and IT stations are denser than the rest of the array. This infill
region is optimized for the study of low-energy particles.

Besides its use as an active veto for neutrino detection, IT is utilized for cosmic-ray (CR)
detection. The signal footprint measured at IT from secondary particles in CR-induced air showers
allows for the reconstruction of arrival direction and energy. In addition to this, the information from
coincident high-energetic muons penetrating through the ice and the deep IC array can be useful
to determine the mass of a CR primary. Understanding the composition of CRs holds significant
importance in our understanding of their sources and acceleration mechanisms since they are the
most representative matter samples from the astrophysical sources they originate from.

A previous IceCube study has already demonstrated the feasibility of estimating CR energy and
mass simultaneously with reconstructed IT and IC parameters using a neural network [3]. Recent
advances in machine learning have opened prospects for even faster and more detailed analyses
of CRs with IceCube. Hence, here we will discuss the development on three different approaches
for CR primary mass estimation. Tree-based techniques and a graph neural network (GNN) based
technique are presented, which show an improvement in mass reconstruction and reduce systematic
uncertainties, especially for CR primaries with intermediate mass. Also, while the previous analysis
was constrained to an earlier detector configuration (79-string, 73-station, configuration, IC-79/IT-
73), we expand our methods to the complete IC86/IT81 configuration as well as to sub-PeV primary
CR energies.

2. Methods

In the following text, we will discuss three different machine-learning (ML) and deep learning
based implementations that are intended to assist in establishing a framework that can do cosmic-ray
analysis on a per-event basis at IceCube. These will possibly provide us with new insights into the
still uncomprehended problems in air-shower physics, in addition to reducing analysis time. The
first method is based on a random forest ensemble of high-level reconstructed air-shower param-
eters. The second method is based on GNNs and benefits by using the information encoded in
the full-signal footprint measured in the IC, in addition to using global reconstructed information
unique to each air shower. The third method is an alternative tree-based approach that extends to
sub-PeV CRs. Since the already studied shower properties used for composition studies at IceCube
do not give sufficient separation power with decreasing energy, a collection of new in-ice features
is tested in the low-energy regime.

The baselineMonte-Carlo (MC) simulations used in these studies are simulated using the COR-
SIKA [4] air-shower simulation program, using FLUKA [5] as the low-energy hadronic interaction
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Figure 1: Composition sensitive IC86/IT81 variables (SIBYLL 2.1 [6], left: log-likelihood ratio, right: total
stochastic energy) as a function of shower size, (125, for proton and iron primaries.

model and SIBYLL 2.1 [6] as the high-energy interaction model. The proton, helium, oxygen and
iron datasets were simulated with an �−1 spectrum in the range 5.0 ≤ log10(�/GeV) ≤ 8.0.

2.1 Based on Random Forests

Reconstructed values are used to train a random forest (RF) ensemble to reconstruct the
logarithm of the primary mass number ln(�). Two different input scenarios are compared with
each other, similar to the study shown in [7], a baseline analysis and an improved input analysis.
Scikit-learn [8] was used for pre-processing and for the computation of the RF. Only events passing
the IceTop and in-ice selection cuts mentioned in [3] were used.

The baseline analysis uses the reconstructed zenith angle (cos(\)), the logarithmof the expected
shower signal (log10((125)) at 125m distance from the shower axis in IT and the fit-value of the
IC energy loss profile at a fixed slant depth of 1500m (log10(d�/d-1500 m)). As shown in [3],
log10((125) is correlated to the primary CR energy and is used as an energy estimator.

The improved analysis uses an additional log-likelihood ratio (LLHR) value on a per-event
basis, along with the remaining features mentioned. This LLHR value is calculated from the
simulated detector response parameterization of all IceTop tanks for proton and iron MC, based on
the study [9]. The dependence of LLHR on (125 is shown in Figure 1 (left). It shows a similar
importance for mass sensitivity as is shown by IC’s log10(d�/d-1500 m). The additional information
for the RF analysis shows an improvement on average of 10% in the mass composition resolution
in the template analysis similar to [7] .

2.1.1 RF Regressor Structure

The same meta-parameters are used for the two RF regressors. In total, 500 trees are trained
in this ensemble with a maximum depth of 150. The tree split criterion is the minimization of
mean square error (mse). Additionally, a bootstrap method was applied and an out-of-bag sample
to estimate the generalization score. All other values are kept to the default values in [8].
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2.2 Based on Graph Neural Networks

In the upcoming decade, IceCube Collaboration intends to enhance the current detector to the
next-generation instrument, called IceCube-Gen2 [10]. The enhancement will add new detector-
types to the current detector. This includes a high-energy radio array and a surface CR detector
array, in addition to enlarging the current in-ice optical array and adding the even denser lower-
energy deep-core strings around the center of the current array. These enhancements will drift
the current detector geometry from the roughly hexagonal geometry to a more irregular one. A
long-term analysis method implemented at IceCube needs to be flexible to these detector upgrades.

The current ML-based techniques implemented for cosmic-ray analysis [3] at IceCube require
a prior reconstruction of composition-relevant air-shower parameters (e.g. log10(d�/d-1500 m),
LLHR). A future analysis, using the entire detected IT and IC shower-footprint holds the possibility
of a further improvement in mass-estimation. The utilization of the in-ice signal for neutrino
analysis at IceCube Observatory is more detailed, and the implementation uses convolutional
neural networks (CNNs) [11]. The successful training of a CNN requires data arranged in a fixed
and uniform orthogonal grid. The current detector geometry is closer to a hexagonal geometry than
orthogonal. As the strings and DOMs, which form the input pixels for the CNN in the analysis,
are not uniformly distanced throughout the detector, the current CNN-based implementation has
to transform the hexagonal geometry to an orthogonal one with specialized kernels (as done in
[11]) and treat the geometrically distinct parts of the detector separately. With the shift to an even
more irregular detector geometry with future enhancements, these transformations will possibly be
inefficacious.

To establish a robust analysis method which uses detailed signal deposit information and also
allows easier re-implementation for a future detector configuration, GNNs [12] hold a significant
promise. This is primarily because GNNs allow network training using data in its most natural
configuration, while also exploiting the information exchange between individual building blocks of
the graph, as is true for CNNs. A previous work using GNNs has already shown improvement over
CNNs for IceCube signal classification [13]. Here, we have extended the work for the composition
analysis of cosmic rays at IceCube. Another ongoing work [14], is also using GNNs for the
reconstruction of neutrino events at IceCube.

2.2.1 Network Architecture

As with the RF method, only events passing the IceTop and in-ice selection cuts mentioned
in [3] were used. The network is currently implemented in PyTorch [15] and takes about 12
hours for a successful training run on NVIDIA Tesla V100. An advanced implementation of
the current method will soon be ported to use PyTorch Geometric [16]. PyTorch Geometric is
better suited for graph-based deep-learning methods and hence also provides more opportunities
for experimentation.

The current network architecture is divided into two components. The first one is a graph-neural
network based implementation. The nodes of the graph are formed by all the in-ice hit-DOMs in
an event and the edges are the learned functions of spatial coordinates of DOMs. Associated to
each node is a set of input features which capture the spatial coordinates of DOMs, and the charge
and timing information of the measured waveform for the hit DOMs. Non-hit DOMs are padded
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as zeros. The second component is a fully-connected (FC) network that uses the global features
associated to each event. Similarly to the previous method, it also uses log10((125/VEM) (vertical
equivalent muon = unit for quantifying charge deposit by a vertical muon in IceTop DOMs) as an
energy proxy. To benefit from the in-ice information, it uses log10(d�/d-1500 m). In addition to
this, it also uses total energy of high-energy local-stochastic deposits in an event (standard selection
- explained in [3]). Its dependence on log10((125/VEM) is shown in Figure 1 (right). The output
from the earlier mentioned two components are then concatenated into another FC network. The
full network is trained as a regression-model with the logarithmic mass of CR primary i.e. ln(�)
as the expected output.

2.3 Low-Energy Extension with Boosted Decision Trees

Knowing the elemental composition of cosmic rays over many energy decades enables drawing
better conclusions about the origin of galactic and extragalactic CRs. In order to study the entire
knee region of the cosmic-ray spectrum, in particular, the overlap region between direct and indirect
measurements of CRs, lowering the energy threshold of IceTop to about 105 GeV is necessary. For
this purpose, a dedicated trigger has been developed that requires only two hit nearby stations in
the denser infill region in contrast to five stations needed in the standard trigger. This trigger was
used for a previous IceTop analysis in the energy range 250 TeV - 10 PeV, however the unknown
composition was a significant systematic uncertainty [17]. We use a boosted decision tree (BDT)
[8] with new parameters to predict the mass of CR primaries activating that low-energy trigger.

Prior to this BDT, random forest regressors [8] are trained to estimate the shower core position
on the surface, zenith angle and energy of a given CR event using IT information alone. The used
BDT classifier model is constrained to a maximum tree depth of 2 and is trained in 4000 iteration
steps with a learning rate of 0.01. Those hyper-parameters result from 10-fold cross-validation.
The input features include fit values to the in-ice energy loss profile d�/d- at slant depths 1500m
and 1800m, stochastic losses (highest, total and average in standard and strong selection) [3] as
well as the average depth of stochastic losses and the number of hit in-ice DOMs after cleaning.
For most of these features 5 , log10( 5 /�reco) is used as an input, where �reco is the output of the
energy regressor. RFs and the BDT are each trained on proton and iron Monte-Carlo data. Only
events passing the cuts mentioned in [17] have been used for training and testing. The data used
with the BDT are further constrained by requiring a successful energy loss fit to the in-ice signals.
In contrast to the regressive estimation of shower core position, zenith angle and energy, here the
identification of CRs is performed as a binary classification task.

3. Results

The RF-based method benefits from the simplicity of the data-quality selection, easier model
parameter selection, and the capability to determine the feature importance of the used observable
parameters. As shown in Figure 2, an improvement in the mass resolution was obtained by the
RF-based method, in comparison to the baseline analysis. This improvement can primarily be
attributed to the additional composition-sensitive LLHR-parameter.

In the preliminary test, the GNN based technique has shown even better mass resolution and
preciseness in prediction. This is shown in Figure 3, where the mass output by the network is
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Figure 2: Kernel density estimation (KDE) of the natural logarithm of the cosmic-ray primary mass using
the baseline and the improved RF-based method (vertical dashed lines: true primary mass).

centered closer to the true primary-mass for both primary types. A more detailed treatment of
the observed air-shower helps in achieving better composition sensitivity than other methods. By
combining high-level reconstruction information with the full detector response on a per-event basis
ensures that it also benefits from already existing composition-sensitive parameters.

The separation power of commonly used composition-sensitive parameters is shrinking with
decreasing primary energy of CRs. Tree-based methods, however, are able to classify cosmic-ray
events with energies as low as a few hundred TeV when provided with an energy estimate from IT
and combined information on in-ice energy losses. The accuracy of the assignment into the classes
H and Fe is presented in a confusion matrix (Figure 4, left). In order to show that the proton- and
iron-trained BDT predicts the identity of a CR primary in a reasonable fashion, the model is tested
on simulated data of the intermediate-mass elements, helium and oxygen. For each of the four
primary types, the probabilities assigned by the BDT to a classification as proton are shown in the
right panel of Figure 4.

4. Conclusion and Outlook

With the implementation of further detector types in the near future in IceCube-Gen2, the
machine learning methods are crucial to derive the best physics results possible. Three different
cosmic-ray mass composition studies presented here already utilize the hybrid measurements of IC
and IT. All of these studies show promising results to extend and improve the mass composition
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Figure 3: KDE of the natural logarithm of the cosmic-ray primary mass as predicted by the GNN-based
method, trained on H and Fe MC-data with a mixed composition i.e. 50% H - 50% Fe (vertical dashed lines:
true primary mass).
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the probabilities for proton classification for primaries proton, helium, oxygen and iron.

7



P
o
S
(
I
C
R
C
2
0
2
1
)
3
2
3

Study of Mass Composition of Cosmic Rays with IceTop and IceCube Paras Koundal

sensitivity of CRs over to the full energy range, from PeV to EeV. The GNN and BDT-based
approach will upgrade the analysis to all primary-types, in the immediate future. A combined
future analysis will merge the best principles from all these implementations for a more detailed
and precise cosmic-ray composition analysis.
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