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More than half a century after the discovery of ultra-high energy cosmic rays (UHECRs), their
origin is still an open question. The study of anisotropies in the arrival directions of such particles
is an essential ingredient to solve this puzzle. We update our previous analysis of large-scale
anisotropies observed by the Pierre Auger Observatory using the latest data collected before the
AugerPrime upgrade. We select events with zenith angles up to 80 degrees, implying a sky
coverage of 85%, and energies above 4 EeV, for which the surface detector of the Observatory
is fully efficient. Dipolar and quadrupolar amplitudes are evaluated through a combined Fourier
analysis of the event count rate in right ascension and azimuth. The analysis is performed in
three energy bins with boundaries at 4, 8, 16 and 32 EeV and two additional cumulative bins
with energies above 8 and 32 EeV. The most significant signal is a dipolar modulation in right
ascension for energies above 8 EeV, as previously reported, with statistical significance of 6.6𝜎.
Additionally, we report the measurements of the angular power spectrum for the same energy bins
with the same dataset.
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1. Introduction

Ultra-high energy cosmic rays (UHECR) are particles with energies above 1 EeV1 that hit our
atmosphere coming from space. Their origin remains an open question in physics and astrophysics.
The study of anisotropies in the arrival directions of UHECR as a function of energy is a very
important element to unveil their sources. In particular, together with the analysis of features in
the energy spectrum and information about the mass composition of these high-energy particles, it
can help to understand their acceleration mechanisms at their sources and how they propagate up
to Earth. Since the majority of UHECR are charged particles, they are deflected along with their
propagation on magnetic field regions. The poor knowledge about the magnitude of the galactic and
extragalactic magnetic fields and chemical composition of the cosmic rays makes the identification
of such sources a very difficult task. Large-scale anisotropies such as dipolar or quadrupolar patterns
in the flux of UHECR are expected in the case of diffusive or quasi-rectilinear propagation from an
anisotropic distribution of sources or diffusive propagation from the closest extragalactic source(s).
Even for a pure dipole gradient at the entrance of the Galaxy, magnetic deflections are expected to
give rise to higher-order multipoles, although with small amplitude [1]. Moreover, the cosmic-ray
flux could be also affected by random configurations of point sources and magnetic deflections,
showing the relevance of extending the search to larger multipoles. We reconstruct the dipolar and
quadrupolar components through a combined Fourier analysis of the event rate in right ascension
and azimuth by assuming a pure dipolar and a dipolar plus quadrupolar flux and measure the angular
power spectrum of events detected in the Pierre Auger Observatory with energies above 4 EeV.

2. The data set

The data set used in this work is composed of events detected with the surface detector (SD) of
the Pierre Auger Observatory [2] from 2004 January 1 to 2020 December 31 with zenith angles 𝜃 up
to 80◦ and energies above 4 EeV. With this selection, we explore all the directions with declination
𝛿 between −90◦ ≤ 𝛿 ≤ 45◦, covering 85% of the sky, and exploit the fact that the SD is fully
efficient for vertical events (those with zenith angles 𝜃 ≤ 60◦) with an energy above 3 EeV and for
horizontal events (those with zenith angles 𝜃 > 60◦) with an energy above 4 EeV. We consider a
quality cut that requires at least five of the six water-Cherenkov detectors surrounding the station
with the largest signal were operational at the time the event was recorded. The total accumulated
exposure is 110, 000 km2 sr yr.

For vertical events, the energy estimation is based on the shower signal at 1000 m from the
shower core. The latter is affected by variation of the atmospheric conditions, such as changes in
the air density and pressure [3]. In particular, under hot weather conditions, the lower air densities
tend to increase the lateral spread of the air shower leading to an overestimation of the primary
cosmic-ray energy and ultimately to spurious daily and seasonal variations of the flux of cosmic rays
above a given energy threshold. Besides, large values of the pressure correspond to an increased
(decreased) matter overburden, implying that the shower is in a more (less) advanced stage when it
reaches the ground level. These atmospheric effects are taken into account by correcting the energy
estimator of the vertical events as described in [3]. Furthermore, the geomagnetic field breaks the

11 EeV ≡ 1018 eV.
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circular symmetry of the shower around its axis, leading to a spurious azimuthal modulation of
about∼ 0.7%, which is a posteriori corrected for vertical events following [4]. For inclined showers,
the electromagnetic component is attenuated because of the larger amount of atmosphere traversed.
As a result, the more penetrating muonic component is dominant making the small variations of
atmospheric mass overburden negligible for their propagation, Moreover, the geomagnetic effects
are accounted for a priori in the shower reconstruction. The analyses reported in this work were
performed in three energy bins with boundaries at 4, 8, 16 and 32 EeV and two additional cumulative
bins with energies above 8 and 32 EeV.

3. Analyses method and results

3.1 Harmonic analysis

We perform a weighted Rayleigh analysis in right-ascension and azimuth (𝑥 = 𝛼 or 𝜙, respec-
tively). The harmonic amplitudes of order 𝑘 are given by

𝑎𝑥𝑘 =
2
N

𝑁∑︁
𝑖=1

𝑤𝑖 cos(𝑘𝑥𝑖), 𝑏𝑥𝑘 =
2
N

𝑁∑︁
𝑖=1

𝑤𝑖 sin(𝑘𝑥𝑖), (1)

where the sums run over all event 𝑖 and the normalization factor is N =
∑𝑁

𝑖=1 𝑤𝑖 . The weight factors
𝑤 take into account the modulations in exposure due to the growth of the array and sporadic dead
times as well as the effects of the small tilt of the array, which on average is inclined 0.2◦ toward
𝜙0 ' −30◦. They are given by

𝑤𝑖 =
[
Δ𝑁cell(𝛼0

𝑖 ) × (1 + 0.003 tan 𝜃𝑖 cos(𝜙𝑖 − 𝜙0))
]−1

, (2)

with Δ𝑁cell(𝛼0
𝑖
) being the normalized event count rate as a function of the right ascension of the

zenith of the observatory 𝛼0
𝑖

at the time the 𝑖-th event is recorded. The amplitudes and phases of
the harmonics are given by 𝑟 𝑥

𝑘
=

√︃
(𝑎𝑥

𝑘
)2 + (𝑏𝑥

𝑘
)2 and 𝜑𝑥

𝑘
= atan(𝑏𝑥

𝑘
/𝑎𝑥

𝑘
)/𝑘 . The probability that an

amplitude equal to or larger than 𝑟 𝑥
𝑘

results from fluctuations from an isotropic distribution is given
by 𝑃(≥ 𝑟 𝑥

𝑘
) = exp(−N (𝑟 𝑥

𝑘
)2/4) [5]. The combination of first harmonic analyses in right ascension

and azimuth distributions allows the reconstruction of the three components of a dipole. Assuming
a pure dipolar flux, the amplitude of the dipole components in the equatorial plane 𝑑⊥ and along
the rotation axis of the Earth 𝑑𝑧 are given by 𝑑⊥ ' 𝑟𝛼1 /〈cos 𝛿〉 and 𝑑𝑧 ' 𝑏

𝜙

1 /(cos ℓ𝑜𝑏𝑠 〈sin 𝜃〉),
respectively, while the dipole right ascension and declination (𝛼𝑑 , 𝛿𝑑) are given by 𝛼𝑑 = 𝜑𝛼

1 and
𝛿𝑑 = atan(𝑑𝑧/𝑑⊥). In Table1 we show the values of the 3D dipolar reconstruction for the different
energy bins considered in this work, as well as the total number of events 𝑁 for each energy
bin and the probability that a dipole equatorial component arises by chance from an isotropic
distribution. The largest departure from isotropy is for the inclusive bin above 8 EeV, for which
the dipole equatorial component has a probability to arise by chance from an isotropic distribution
of 5.1 × 10−11, corresponding to a statistical significance of 6.6𝜎. In the left panel of Fig. 1 we
present the normalized count rate as a function of the right ascension in the energy bin 𝐸 > 8 EeV
with the first-harmonic modulation obtained through the Rayleigh analysis shown by a black solid
line (𝜒2/dof = 13.06 for 10 degrees of freedom). A map of the cosmic-ray flux for this energy

3



P
o
S
(
I
C
R
C
2
0
2
1
)
3
3
5

Large-scale and multipolar anisotropies at the Pierre Auger Observatory R. M. de Almeida

𝐸 (EeV) 𝑁 𝑑⊥ 𝑑𝑧 𝑑 𝛼𝑑 [◦] 𝛿𝑑 [◦] P(≥ 𝑟𝛼1 )
4-8 106, 290 0.01+0.006

−0.004 −0.012 ± 0.008 0.016+0.008
−0.005 97 ± 29 −48+23

−22 1.4 × 10−1

8-16 32, 794 0.055+0.011
−0.009 −0.03 ± 0.01 0.063+0.013

−0.009 95 ± 10 −28+12
−13 3.1 × 10−7

16-32 9, 156 0.072+0.021
−0.016 −0.07 ± 0.03 0.10+0.03

−0.02 81 ± 15 −43+14
−14 7.5 × 10−4

≥8 44, 398 0.059+0.009
−0.008 −0.042 ± 0.013 0.073+0.011

−0.009 95 ± 8 −36+9
−9 5.1 × 10−11

≥32 2, 448 0.11+0.04
−0.03 −0.12 ± 0.05 0.16+0.05

−0.04 139 ± 19 −47+16
−15 1.0 × 10−2

Table 1: 3D dipole reconstruction. Shown are the number of events 𝑁 , dipole components in the equatorial
plane 𝑑⊥ and along the rotation axis of the Earth 𝑑𝑧 , the total 3D amplitude 𝑑, dipole direction (𝛼𝑑 , 𝛿𝑑) and
the probability to get a larger amplitude of 𝑟𝛼1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure
in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the
Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous
publications [6, 7].

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The
evolution can be described as done in [6] by 𝑑 = 𝑑10(𝐸/10 EeV)𝛽 with 𝑑10 = 0.050 ± 0.007 and
𝛽 = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the different energy bins
is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per
unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of
the dipole direction as a function of energy considering the present accuracy. The growth of the
dipole amplitude as a function of energy can be a consequence of the larger relative contribution
from nearby sources to the flux at higher energies with respect to the integrated flux from the
more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources
at larges distances is expected to result from the interaction of UHECRs with the background
radiation [19, 20]. Interpretation of the reconstructed dipole directions for the different energy
bins requires taking into account the magnetic deflections of the particles during their trajectory

4
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Figure 2: Left panel: Energy dependence of the dipolar amplitude measured above 4 EeV. Right panel:
Reconstructed dipole directions in different energy bins and corresponding 68% C.L. uncertainty, in Galactic
coordinates. The dots indicate the positions of 2MRS galaxies within 100 Mpc.

from the sources up to Earth, being a difficult task because of our still uncertain knowledge about
cosmic ray composition and Galactic and extragalactic magnetic fields. Nevertheless, by using a
detailed large scale structure matter density field [21] derived from the CosmicFlows-2 catalog of
peculiar velocities [22], an estimation of the magnitude, direction and energy dependence of the
dipolar anisotropy as a function of energy was obtained by performing a combined fit of the dipole
components and cosmic ray composition [23].

Allowing for the presence of a quadrupole, the reconstructed dipolar and quadrupolar com-
ponents of the flux for all energy bins were obtained as in [9] and reported in Table 2. The five
independent quadrupolar components are not significant in any of the energy bins.

3.2 Angular Power Spectrum

The angular distribution Φ(n) of cosmic rays observed by an experiment in some direction n
can be decomposed by separating the dominant monopole contribution from the anisotropic one,
Δ(n), as

Φ(n) = 𝑁

4𝜋 𝑓1
𝑊 (n) [1 + Δ(n)] , (3)

where 𝑊 (n) is the relative coverage of the observatory, 𝑓1 =
∫
𝑑n 𝑊 (n)/4𝜋 the fraction of

the sky effectively covered by the observatory and 𝑁 the total number of observed cosmic rays.
Unfortunately, due to the partial sky coverage of the observatory, the estimation of the individual
𝑎ℓ𝑚 coefficients of the spherical harmonic expansion of Δ(n), and its angular power spectrum
𝐶ℓ =

∑ℓ
𝑚=−ℓ |𝑎ℓ𝑚 |2/(2ℓ + 1), cannot be carried out with relevant resolution as soon as ℓ𝑚𝑎𝑥 >

2. However, one can make additional assumptions2 about the ensemble-averaged expectation
values of the multipole components [24] and it is possible to recover the angular power spectrum
coefficients. In this situation, the pseudo-power spectrum �̃�ℓ =

∑ℓ
𝑚=−ℓ |�̃�ℓ𝑚 |2/(2ℓ + 1) (which

is directly measurable, obtained from �̃�ℓ𝑚 =
∫
𝑑n 𝑊 (n)Δ(n)𝑌ℓ𝑚(n)) is related to the real power

spectrum through

�̃�ℓ =
∑︁
ℓ′

𝑀ℓℓ′𝐶ℓ′ . (4)

2For a more detailed discussion about these assumptions see [25].
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Energy [EeV] 𝑑𝑖 𝑄𝑖 𝑗

4-8 𝑑𝑥 = −0.008 ± 0.007 𝑄𝑧𝑧 = 0.008 ± 0.036
𝑑𝑦 = 0.008 ± 0.007 𝑄𝑥𝑥 −𝑄𝑦𝑦 = 0.004 ± 0.026
𝑑𝑧 = −0.008 ± 0.021 𝑄𝑥𝑦 = −0.01 ± 0.01

𝑄𝑥𝑧 = −0.02 ± 0.02
𝑄𝑦𝑧 = −0.008 ± 0.017

8-16 𝑑𝑥 = −0.005 ± 0.013 𝑄𝑧𝑧 = 0.074 ± 0.064
𝑑𝑦 = 0.045 ± 0.013 𝑄𝑥𝑥 −𝑄𝑦𝑦 = 0.02 ± 0.05
𝑑𝑧 = 0.01 ± 0.04 𝑄𝑥𝑦 = 0.039 ± 0.024

𝑄𝑥𝑧 = −0.002 ± 0.031
𝑄𝑦𝑧 = −0.03 ± 0.03

16-32 𝑑𝑥 = 0.05 ± 0.02 𝑄𝑧𝑧 = −0.14 ± 0.14
𝑑𝑦 = 0.09 ± 0.02 𝑄𝑥𝑥 −𝑄𝑦𝑦 = 0.17 ± 0.09
𝑑𝑧 = −0.15 ± 0.07 𝑄𝑥𝑦 = −0.05 ± 0.04

𝑄𝑥𝑧 = 0.12 ± 0.06
𝑄𝑦𝑧 = 0.06 ± 0.06

≥ 32 𝑑𝑥 = −0.12 ± 0.05 𝑄𝑧𝑧 = −0.17 ± 0.26
𝑑𝑦 = 0.11 ± 0.05 𝑄𝑥𝑥 −𝑄𝑦𝑦 = 0.43 ± 0.17
𝑑𝑧 = −0.22 ± 0.13 𝑄𝑥𝑦 = 0.10 ± 0.09

𝑄𝑥𝑧 = −0.12 ± 0.11
𝑄𝑦𝑧 = 0.13 ± 0.11

≥ 8 𝑑𝑥 = −0.001 ± 0.011 𝑄𝑧𝑧 = 0.02 ± 0.06
𝑑𝑦 = 0.06 ± 0.01 𝑄𝑥𝑥 −𝑄𝑦𝑦 = 0.08 ± 0.04
𝑑𝑧 = −0.03 ± 0.03 𝑄𝑥𝑦 = 0.02 ± 0.02

𝑄𝑥𝑧 = 0.02 ± 0.03
𝑄𝑦𝑧 = −0.003 ± 0.026

Table 2: Reconstructed dipole and quadrupole components for different energy bins. The 𝑥 axis is in the
direction 𝛼 = 0◦.

The operator 𝑀 describing the cross-talk induced by the non-uniform exposure between genuine
modes is entirely determined by the knowledge of the exposure function and it is given in terms of
the Wigner symbols by

𝑀ℓℓ′ =
2ℓ′ + 1

4𝜋

∑︁
ℓ3

(2ℓ3 + 1)𝑊ℓ3

(
ℓ ℓ′ ℓ3
0 0 0

)2

, (5)

with the angular power spectrum of 𝑊 (n) given by 𝑊ℓ = 1
2ℓ+1

∑
𝑚 |𝑎ℓ𝑚 |2. The power spectrum

can thus be recovered from the inversion of Eq. 4. The measured power spectra for different
energy bins after subtraction of the irreducible noise induced by Poisson fluctuations 4𝜋

𝑁

𝑓 2
1
𝑓2

, with
𝑓2 =

∫
𝑑n𝑊2(n)/4𝜋), are presented in Fig.3. Besides the significant dipolar pattern corresponding

to 𝐶1, in agreement with the Rayleigh analysis, the only 𝐶ℓ’s that stand above the 99% C.L. of
isotropic fluctuations are 𝐶17, corresponding to an angular scale of ∼ 180◦/ℓ ≈ 11◦, and 𝐶8,

6
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Figure 3: Angular power spectrum measurements for different energy bins. The gray bands correspond to
the 99% C.L. fluctuations that would result from an isotropic distribution.

corresponding to an angular scale of ∼ 23◦, for the energy bins [4, 8] EeV and [16, 32] EeV,
respectively. After statistical penalization for searches in different multipoles and energy bins (four
independent energy bins × 20 multipoles measurements = 80), the statistical significances are 3.1%
and 15.5%, respectively. All other multipole power 𝐶ℓ’s in different energy bins are not significant.

4. Conclusion

Summarizing, we updated our previous analysis of large-scale anisotropies observed by the
Pierre Auger Observatory using data collected until 2020 December 31. The statistical significance
of the large-scale dipolar modulation observed above 8 EeV has increased to 6.6𝜎. Besides, the
amplitude of the dipole increases with energies although there is no clear trend in the change of
the dipole direction as a function of energy, and the quadrupole components are not significant in
any of the energy bins. The 𝐶1 obtained from the angular power spectrum increases with energy
in agreement with the results obtained by using the Rayleigh analysis. All other multipoles are not

7



P
o
S
(
I
C
R
C
2
0
2
1
)
3
3
5

Large-scale and multipolar anisotropies at the Pierre Auger Observatory R. M. de Almeida

significant. The Pierre Auger Observatory is undergoing a major upgrade phase called AugerPrime
[26]. The main goal of the AugerPrime is to enhance the determination of the cosmic-ray mass
composition exploiting the 100% duty cycle of the surface detectors. The additional information
will certainly help the searches for anisotropies since it will allow to restrict the analyses to less
deflected light particles. Therefore, the expectations for improvements in our knowledge about the
sources of the ultra-high energy cosmic rays are very promising considering the detection of events
by the Pierre Auger Observatory in the next years.
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