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1. Introduction and Model

The origin of Ultra High Energy Cosmic Rays (UHECRs, � > 1018 eV) remains undetermined
despite a sample of tens of thousands of events collected by very large observatories around the
world. UHECRs are believed to be of extragalactic origin, because of the observed anisotropy of
arrival directions and the diffusion scale for magnetic field within the galaxy.

Employing a relatively simple model of UHECR sources we use Telescope Array (TA) mea-
surements of the energy spectrum and the observed distributions of -max, the depth in the atmo-
sphere where extensive air showers reach their maximum size, to constrain possible UHECR source
parameters.

The model we are employing is the same as that used by the Pierre Auger Observatory in
a similar fit [1]. The source model assumes that UHECR sources are identical and uniformly
distributed with a density which evolves as (1 + I)3 for I < 1.5 and is constant for I > 1.5 [8].
Each source has a mix of five nuclei (H, He, N, Si, and Fe) that are accelerated to give spectra with
identical power law slopes (�−W) and a rigidity-dependent exponential cutoff, 'max. The source
parameters are therefore W, 'max, and five fractions (which sum to unity). Cosmic rays generated
at I > 1 cannot effect TA observations at the highest energies; however, cosmic rays from these
distant sources contribute significantly to the predicted neutrino flux.

The model is constrained by the TA surface detector (SD) spectrummeasurement (as presented
at the 2017 ICRC [2]) and the TA Stereo Composition measurement (also from the 2017 ICRC [3]).
We choose the TA SD spectrum because it has the largest set of statistics for a UHECR energy
spectrum measured in the Northern Hemisphere. It is also different from the spectrum measured in
the Southern Hemisphere with a higher energy for the final sharp break in the spectrum (60 EeV cf.
40 EeV). We choose the TA Stereo composition measurement because of its indifference to high
energy particle interaction models.

The effects of propagation of nuclear species through the universe is done by the CRPropa
model [4]. The CRPropa calculationwas done using both the cosmicmicrowave background (CMB)
and the Gilmore model [5] of the infrared background (IRB) to calculate photo-pion production,
photo-nuclear disintegration and electron-positron pair-production. The cosmological parameters
used were those determined by Planck in 2015 [6]. A 1-D propagation calculation was performed
for a series of small ranges in I, “shells”, with 462 shells logarithmically spaced between I = 10−4

and I = 4. 20 thousand particles per 0.1 decade of energy of each source species were injected
with an �−1 spectrum between the energies of 0.0316 EeV and (rigidity dependent) 3160 EV. Each
“observed” nuclei was recorded and binned by atomic number. Thus for each input species, each
possible output species and each shell, we create a 650 × 650 bin �out/�in histogram. (�in is the
injected energy, �out is the energy at observation) These can be combined into big arrays, e.g., for
Fe (�=56) we have a 56 × 462 × 650 × 650 array. As this gets to be an unruly size of data, we
sum over the 462 I-shell bins weighted by the light-travel time across the shell (i.e. the thickness
of the shell) and the density of sources in the shell (given by the I-dependent density assumption
given above). Using the �out/�in histograms then we can put in any input (source) spectrum and
get the expected “observed” spectrum of a particular nuclear type. The input spectrum is created
according to the model given above.

For comparison with the spectrum we use this output directly. For comparison with the stereo
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Energy Range 18.4 – 18.6 18.6 – 18.8 18.8 – 19.0 19.0 – 19.2 19.2 – 19.6 19.6 – 20.0
proton 21.8 19.0 17.6 16.3 16.4 16.4
Iron 17.8 16.8 14.8 13.2 13.0 12.8

Table 1: Table of -max resolutions in g/cm2. Energy ranges are given in log10 (�/EeV)

composition measurement we use the Gumbel [7] distribution to create -max distributions for
each nuclear type and energy. The parameters for the Gumbel distribution for given high-energy
interaction models has been tabulated in [7]. We must then also apply a stereo -max acceptance
weighting to these distributions and smear according to the stereo -max resolution. The -max

acceptance was calculated in the energy bins used and then fit to a model of a flat-top plateau, a
breakpoint in -max and an exponential fall-off in acceptance above the break point. It was found
that a single value of the breakpoint and the exponential slope could be used to fit the acceptance
in all energy bins. The -max acceptance is shown in Figure 1. The stereo -max resolution was
calculated by comparing the generated and the reconstructed -max values for simulated proton and
iron primaries using in each energy band. This determination of the -max resolution is the same as
that determined from the stereo composition analysis [3]. The values for the -max resolution used
in this analysis are stated in Table 1. The -max distribution resulting from the output of the Gumbel
model and with the acceptance model applied, was then smeared using a single gaussian in -max

with a width given by logarithmic interpolation between the tabulated proton and iron resolutions
based on the known primary nuclear mass. The sum of these -max distributions for all the observed
primary cosmic ray species was then compared to the observed -max distribution.

For both the spectrum and composition analyses we use a binned log-likelihood comparison of
events observed compared to events in the model. For the spectrum comparison the log-likelihood
is based on the Poisson distributions, while for the -max comparison, the log-likelihood is based
on a multinomial distribution. Both log-likelihood comparisons are scaled to produce a j2-like
distribution in the limit of very large numbers of events. We refer to these as deviances, and sum
the deviance from the spectrum and the deviance from the compositions analysis to determine an
overall figure-of-merit for the model with given parameters.

2. Combined Fit Results
Our fits presented here use the QGSJetII-04 high-energy interaction model for the Gumbel

/Xmax/ distributions and the Gilmore-12 IRB model. We scan the W–log10('max/EV) plane, and
for each pair allow the five source fractions to vary under the requirement that the fractions sum to
unity. We first performed coarse scans, W was scanned in 41 steps from -1.5 – 2.5 while log10 '

was scanned in 41 steps from -0.5 – 3.5. To allow for systematic uncertainties in energy and -max

reconstruction, we shifted the measured energy and -max of the data by various amounts, adding
a j2-penalty to the deviance to account for the shifts. The systematic uncertainty in the energy
measurement was taken to be 22% while the systematic uncertainty in the -max measurement was
taken as 15 g/cm2. The best fits were found with Δ log10 � = −0.12 (1.4f) and Δ-max = +10 g/cm2

(0.67f). We then performed a fine scan with these shift values, 401 steps for W from -1.5 – 2.5,
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Figure 1: Stereo -max acceptance calculated from QGSJetII-04 simulations of iron and proton primaries.
The acceptance is fit to a model with a plateau at small -max, a break point in -max, and an exponential
decrease in acceptance with -max above the break point. The fits were performed using a binned log-
likelihood minimization. The break point and exponential slope were required to be the same for all energy
bins.

301 steps for log10 'max from 0 – 3. The deviance contours corresponding to 10-f are shown in
Figure 2. The best fit point is at (2.06, 2.26) with a total deviance � = 126.0 for 65 = 16 + 55 − 6
degrees-of-freedom. There is also a local minimum at the point (0.78, 1.20) with � = 200.5.

The details of the best fit point (W = 2.06, 'max = 182 EV) are shown in Figures 3 and 4. The
source fractions are: 0.0%, 99.2%, 0.0%, 0.0%, and 0.8% for H, He, N, Si, and Fe, respectively.
The fit is dominated by the very large flux in TA above 101.7 EeV which is above the model’s
prediction for a GZK-effect.

The details of the fit for the secondary minimum (W = 0.78, 'max = 15.8 EV) are shown in
Figures 5 and 6. The source fractions are: 61.0%, 37.4%, 1.5%, 0.1%, and 0.003% for H, He, N,
Si, and Fe, respectively.

3. Neutrino Flux Prediction
Using CRPropa one can also simulate the production of neutrinos from the propagation of

cosmic rays. We performed this calculation while generating the shell model of the cosmic rays for
our model. We can then predict the cosmogenic neutrinos produced during the propagation of the
cosmic rays used to fit the Telescope Array data. We produced cosmic rays from source distances
beyond what is relevant for fitting the cosmic ray spectrum, but which will contribute to the neutrino
flux. For these distances, 1 < I < 4, we used the van Vliet et al.[8] prescription for the evolution of
the sources, which is (1 + I)< for I < 1.5, and constant for I > 1.5. The predicted flux is shown in
Figure 7, and includes the sum of muon and electron neutrino and anti-neutrinos.

The higher cutoff energy of the TA cosmic ray spectrum thus open the possibility that there
will be a considerable flux of cosmogenic neutrinos, a flux which is in the range of planned neutrino
detectors such as ARIANNA-200.
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Figure 2: A plot of the deviance contours corresponding to 10-f for Telescope Array data using QGSJetII-04
as the high-energy interaction model and the Gilmore-12 IRB model, Δ log10 � = −0.12 and Δ-max = +10
g/cm2 (0.67f). The best fit point is W = 2.06, log10 ('max/EV) = 2.26 ('max = 182 EV). This point had
source fractions: 0.0%, 99.2%, 0.0%, 0.0%, and 0.8% for H, He, N, Si, and Fe, respectively. The local
minimum at W = 0.78, log10 ('max/EV) = 1.20 ('max = 15.8 EV) has source fractions: 97.1%, 0.0%, 0.0%,
0.0%, and 2.9% for H, He, N, Si, and Fe, respectively.
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Figure 3: Left: The observed event energy distribution and the model predictions for observed species the
best fit point. The fit gives a predominantly H at observation, despite no H at the source. There are 16 bins
contributing to the degrees-of-freedom in the fit. Right: The observed and predicted energy flux spectra
(multiplied by �3) for the best fit.
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Figure 4: The observed -max distributions in bins of energy along with the predicted -max distributions from
the model the best fit. The colors of the observed elemental group predictions is the same as in Figure 3.
There are a total of 55 non-empty data bins contributing to the degrees-of-freedom
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Figure 5: Left: The observed event energy distribution and the model predictions for observed species in
the secondary minimum. Right: The observed and predicted energy flux spectra (multiplied by �3) for the
secondary minimum.
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Figure 6: The observed -max distributions in bins of energy along with the predicted -max distributions from
the model in the secondary minimum. The colors of the observed elemental group predictions is the same as
in Figure 3.
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Figure 7: The predicted cosmogenic neutrino flux predicted from the source model of cosmic rays fit in this
paper. Note that units are GeV and GV to align with neutrino astronomy conventions. The prediction from
our best fit model is shown in red. We sampled fits from the scan around the 1-f contour to get generate an
uncertainty band for the predicted flux. While the source is mostly helium, the high rigidity cutoff implies that
many of the spalated protons and neutrons are still above the GZK-threshold energy and can thus contribute
to the cosmogenic neutrino flux. The prediction of the neutrino flux from the secondary minimum is also
shown, in magenta.

4. Discussion
From the fit results shown of the Telescope Array spectrum and stereo composition data, a

number of different interpretations of source compositions could be drawn. Not all of these source
compositions are astrophysically plausible, e.g., predominantly He with no H; or predominantly
H with no He nor N but a little Fe. The best fit for the TA data overall shows that one might
expect predominantly H at observation although no H was accelerated at the source. This is quite
different from the interpretation gleaned from the combined fit to the Auger data, which showed
a moderately soft spectrum at the source contributing to a progressively heavier set of dominant
species at observation. Since the Auger and TA spectrum data are consistent in this range except
for the very highest energies, this difference in interpretation is very dependent on shape of the
spectrum in the very high energy region.
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