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1. Introduction
The Telescope Array (TA) Cosmic Ray Observatory is the largest cosmic ray detector operating

in the northern hemisphere[1]. To better understand the nature of cosmic ray populations at the
highest energies and the mechanisms that influence their propagation through the universe, we
continue to measure the cosmic ray energy spectrum.

TA has passed 11 years of operation. As a followup to the previous TA FD monocular
measurements with 3.5 years[2] and 7.5 years[3] of data and the latest measurement made by the
TA SDs[4], we preform a spectrum calculation using nearly 10 years of data from the BR and LR
FD stations in monocular mode. While the FDs operate with 11% duty cycle compared to the nearly
100% duty cycle of the SDs, the FDs observe the longitudinal development in the Extensive Air
Showers (EAS) and have less hadronic-model dependency for event reconstruction.

2. Monocular Reconstruction
The analysis of events begins by calculating the shower-detector plane (SDP). The normal to

the shower detector plane is determined by minimizing

j2 =

#good∑
8=1
(=̂ · Ê8)2#pe,8 (1)

where =̂is the normal to the SDP, Ê8 the pointing direction of a good PMT, and #p.e.,8 is the number
of photoelectrons is a good PMT.

Next, the geometry of the shower within the SDP is reconstructed by fitting the time vs. angle
of observed signals. The fitted form is

C8 = C0 +
'%

2
tan

(
c − k − j8

2

)
(2)

where C8 the time of a good tube, C0 time when the first light can reach to the detector, '% is the
impact parameter, k is the angle of the shower with respect to the ground within the SDP, and j8 is
the angle viewed by a good tube from the horizon within the SDP. In this fit, '%, k, and C0 are the
floating parameters and there is typically considerable correlation between them, requiring tracks
with considerable angular extent to allow a good fit.

Once the geometry is determined, the shower profile is measured using the flux of photons
observed by the detector, the atmospheric attenuation given the atmospheric properties, and the
average fluorescence yield. The shower profile is fit to a Gaisser-Hillas[5] profile as a function of
shower slant depth -:

#ch = #max

(
- − -max
-0 − -max

) -−-max
Λ

exp
(
-max − -

Λ

)
(3)

where #max is the size of the shower at maximum, -max is the slant depth of the maximum of the
shower (measured in g/cm2), -0 is an unobservable “beginning” of the shower and Λ is the decay
parameter of the shower. The calorimetric energy of the shower is determined by integrating the
energy deposited by the shower particles over the full extent of the shower

�cal =

∫ ∞

-0

3�dep

3-

����
-

3- (4)
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The missing energy, energy carried off by neutrinos and muons which do not deposit most of their
energy in the atmosphere is added back in by a correction calculated from CORSIKA[6]

�cal
�0

= −0.5717 + 0.1416 log10(�cal/eV) − 0.003328
[
log10(�cal/eV)

]2 (5)

We use a new variable '-max which measures the distance to the brightest part of the shower,
as shown to the right. This variable is more relevant for defining the aperture than the impact
parameter -max which may refer to a part of the shower far away from where light is being emitted.
See Figure 1.

Figure 1: Definition of '-max and its relation to the impact parameter -max.

3. Event Selection
From triggered events, a selection was made by various cuts. Cuts at the geometry reconstruc-

tion stage are given in Table 1. Cuts at the profile reconstruction phase are given in Table 2.
Good weather run segements were chose according to at novel neutral-network weather classi-

fication scheme. Using the fact that BRM and LR PMTs are DC connected and thus can provide a
measurement of the background light level, one can make a movie of the night sky with one-minute
long frames, and look for the passage of stars and/or clouds across the field-of-view. A neutral-
network was designed and trained to recognize data parts which were either clear or cloudy. The
data presented here comes only from the clear weather set. The good weather run time, including
deadtime estimates is given in Table 3. Note that time when both detectors were operating and able
to view events in tandem is also given.

With these cuts and taking data from good weather days results in the event energy distribution
shown in Figure 2.

4. Aperture and Exposure Calculation
The instantaneous aperture of the detector of the detector was determined by Monte Carlo

simulation. The showers thrown in the simulation were drawn from a shower library of CORSIKA-
simulated proton and iron showers. The ratio of proton and iron showers at a particular energy were
chosen according to the HiRes/MIA composition fit[7]. The energy was chosen according to the
TA SD spectrum presented at the 2015 ICRC[8]. The detector response was simulated according

3
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Event Geometry Reconstruction Cuts
Good PMT Fraction #good PMT/#PMT ≥ 3.5%
Number of good PMTs #good PMT ≥ 6
NPE per Degree #pe/Δ\ > 25 deg−1

Pseudo-distance (inverse angular speed) ; > 1.5 km
SDP Angle (w.r.t. vertical) Z < 80◦

Impact Parameter '% ≥ 0.5 km
Shower angle in SDP k < 130◦

Shower angle uncertainty fk < 36◦

Timing Fit Successful
j2/ndf < 10

Track Length Δ\ > 10◦

Δ\ > 7◦ (only in lower mirror)
Zenith Angle \zen < 70◦

Trigger Time w/i Frame C0 < 25.6 `s
Crossing Time ΔC < 6 `s for '% < 5 km

Table 1: Event selection cuts applied at the geometry reconstruction phase.

Profile Reconstruction Fits
Profile Fit Successful
First Slant Depth Observed 150 g/cm2 ≤ -1 ≤ 1200 g/cm2

Slant Depth Extent Observed Δ- ≥ 150 g/cm2

Bracketing -1 ≤ -max ≤ -last

Table 2: Event selection cuts applied at the profile reconstruction phase.

Operating Duty Ontime Deadtime Deadtime Livetime
Nights Cycle [h] [h] Fraction [h]

BRM 1593 10.97% 9288.19 574.16 6.18% 8714.03
LR 1493 9.03% 7647.41 555.79 7.26% 7091.63
BRM ∩ LR 1378 6876.40 13.00% 5982.47

Table 3: Runtime statistics for the two detectors and their overlap.

to daily calibration measurements and an average atmospheric model. The total exposures were fit
to the form

b = ?1

(
1 − exp

[
−

log10(�/eV − ?2

?3

] )
(6)

for most of the aperture to smooth out the effect of MC statistics at the highest energies. The
resulting exposures are shown in Figure 3

To verify the accuracy of the exposure calculation we present three comparisons of simulated
data distributions to the same distribution in the actual data. We chose three that are most relevant
to the exposure: '-max , k, and the SDP angle. These comparisons are shown in Figure 4
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Figure 2: The energy distribution of events included in this analysis. BR and LR events are seen by each
sight singly. BRM∩LR events are seen by both sights and plotted as the geometric mean of the two measured
energies.

5. Spectrum Calculation

Using the data and exposure presented, we calculate the following spectrum of UHECRs. We
present it in Figure 5 along with the TA SD spectrum from the 2019 ICRC[4] for comparison.

We have fit the spectrum to a series of once, twice and thrice-broken power law models. The
results of the fits are shown in Figure 6. For the two-break point fits, two separate solutions were
found with very nearly the same chi-squared value, so we present both. The quality of the three
break point fit indicates the presence of a feature between the Ankle and the GZK suppression,
which has been observed in other analyses.

Single Double A Double B Triple
�18/10−30 2.22 ± 0.01 2.22 ± 0.01 2.22 ± 0.01 2.22 ± 0.01
(eV m2 sr s)−1

W1 −3.29 ± 0.01 −3.29 ± 0.01 −3.29 ± 0.01 −3.29 ± 0.01
log10(�1/eV) 18.68 ± 0.04 18.74 ± 0.03 18.72 ± 0.05 18.78 ± 0.04
W2 −2.79 ± 0.05 −2.62 ± 0.06 −2.70 ± 0.05 −2.49 ± 0.15
log10(�2/eV) 19.46 ± 0.10 19.83 ± 0.04 19.20 ± 0.11
W3 −3.8 ± 0.4 −8.0 ± 2.7 −3.04 ± 0.19
log10(�3/eV) 19.85 ± 0.01
W3 −7.7 ± 2.4
�/ndf 43.5/26 22.69/24 23.29/24 17.74/22

Table 4: Parameters resulting from broken-powerlaw fits to the monocular spectrum.
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Figure 3: The exposure of the three components of the detector: BRM and LR solely and BRM&LR
together. The sum of the three exposures is also shown.
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Figure 4: Data/MC Comparisons to verify the quality of the exposure calculation. Shown are comparisons
of '-max , k, and the SDP angle distributions.
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Figure 5: The spectrum of cosmic rays measured in this result. Shown for comparison with the TA SD
spectrum presented at the 2019 ICRC.

Figure 6: Four power-law fits to the measured spectrum. The parameters of the fits are given in Table 4.
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