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1. Introduction

Machine learning techniques are widely used for identifying primary particle air showers
caused by cosmic rays [1–3]. The typical problem one faces in this area is the high variance of
the data measured by detectors. Namely, since the evolution of an air shower is a highly stochastic
process, detectors readings are subject to large fluctuations. The situation is complicated further by
the presence of noise in the data, sparse detectors grid, and defective and offline detectors. These
are the reasons why all of the developed techniques have rather high error rate in estimating the
mass of the primary particle.

We suggest an improvement to the existing techniques by switching from individual predictions
to estimating the fractions of elements in an ensemble of events. The corresponding procedure
includes two steps. Given an ensemble of events, we first use a neural network, which we dub
the classifier, to predict the primary particle for each of the individual events. At the second step,
we average the obtained predictions and pass them through another neural network, the converter,
which yields true portions of elements in the ensemble. The resulting scheme is presented on figure
1, and allows us to reach an error rate of less than 10% in obtaining the fractions of elements in an
ensemble. Below we describe the steps of our data analysis in detail.

Figure 1: Scheme of analyzing the data.

2. Classifier

The classifier is trained to predict the primary particle for an individual event. The training data
is the Monte–Carlo simulated data for the Telescope Array surface detectors readings [4], passing
quality cuts on the events (see [1] for their description). The data includes protons, helium, nitrogen,
and iron as primary particles, and air shower evolution was modeled with QGSJET II–03 hadronic
model [5]. For illustration purposes, here we consider the events only in the energy window between
1018.75 eV and 1019 eV (roughly 100 000 events in total). The architecture of the classifier consists
of 3 blocks, each of which is specialized for analyzing certain kind of data.

The first block is the spatial detector bundle. For each of the events we introduce a six by six
square grid of detectors centered on the shower core. Each element of the grid stores the following
data: coordinates of the detector, total signal, time of the flat front arrival, relative starting time of
detectors readings, and flags related to detector status. This data is analyzed by series of convolution
layers, yielding spatial features of an event as the output.

The second block analyzes the waveform from the detector with the largest integral signal. By
passing the waveform though convolution layers, we obtain the features of the largest signal.

The third block is a temporal detector bundle. For a given event, we collect all triggered
detectors and order them according to the time of the plane front arrival. We first pass each of the
recorded waveforms though series of recurrent cells to extract their features. These features are
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further analyzed by another set of recurrent cells, according to their order in the temporal chain.
Thus we obtain temporal features of the event.

As the last step, we concatenate all of the obtained features and supplement them with
composition–sensitive reconstruction parameters. Together, they are passed through a set of fully
connected dense layers. The output of these layers, and thus of the whole neural network, are the
probabilities of the primary particle being proton, helium, nitrogen, and iron.1

3. Converter

For the second stage, we take an ensemble of events and obtain predictions for each of them
by passing the corresponding data through the classifier. The average of these predictions can be
considered as the estimation of the fractions of elements in the ensemble. For an arbitrary ensemble,
the typical predictions are depicted on the second section of figure 2.

Figure 2: Predictions of the fractions of elements in an ensemble of events using various approaches. From
left to right: true fractions of elements in the ensemble; averaged predictions of the classifier; predictions
improved by using the confusion matrix; converter predictions.

As one can see, the averaged predictions of the classifier are rather far from the true values.
To improve them, one can make use of the confusion matrix, which provides information on how
wrong the predictions are in average. This allows for correction of the predictions by multiplying
them by the inverse of the confusion matrix. As it can be seen from the third section of figure 2,
this approach yields much better predictions.

One can, however, improve the predictions even further. The limitations of the confusion
matrix approach is that it provides linear transformation of the predictions, which works best for
ensembles consisting of one sort of primary particles only. These limitations can be avoided by
introducing another neural network, the converter, which is trained to map averaged predictions
of the classifier to their true values. The predictions obtained in this way are depicted on the last
section of figure 2, and provide the greatest accuracy yet.

1Any of the blocks can be used without others for predicting the primary particle type. However, dropping any of
them results in a much lower accuracy of the predictions.
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proton helium nitrogen iron
classifier 0.10 0.11 0.11 0.09
confusion 0.06 0.14 0.12 0.04
converter 0.03 0.07 0.06 0.02

Table 1: Mean absolute errors of the methods for different particles.

To compare different approaches, we evaluated their mean absolute error on 2 000 ensembles,
each consisting of 5 000 individual events. The results are presented in table 1. Of the different
methods, the analysis using two neural networks yields best result, with an error rate of just 7%.

4. Model dependence

To estimate the error associated with the choice of the hadronic model, we analyzed the
predictions made for Monte–Carlo simulation with QGSJET II–04 model. Namely, we made
“pure” ensembles consisting of proton, helium, nitrogen, and iron primaries and analyzed them
using the scheme described above. The resulting classifier predictions are shown on figure 3. The
masses of primary particles are strongly overestimated. For example, nitrogen is recognized as
pure iron by the classifier–converter chain. Because of the large model error we did not apply this
method to the actual data.

Figure 3: Predictions for “pure” ensembles modeled with QGSJET II–04 hadronic model. From left to
right: the converter predictions for protons, helium, nitrogen, and iron, respectively.

5. Conclusion

The introduced method of analyzing data by the chain of two neural networks allows us
to achieve very high accuracy in estimating the fractions of elements in an ensemble of events.
However, while gaining such high accuracy, the method became very sensitive to the hadronic

4



P
o
S
(
I
C
R
C
2
0
2
1
)
3
8
4

Deep learning for TA SD I. Kharuk

model used in the Monte–Carlo simulations. As a consequence, our method has a large model error.
We hope to overcome this problem in future by training neural networks on multiple ensembles of
events, simulated with various hadronic models.
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