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At the Pierre Auger Observatory, designed primarily to study ultra-high-energy cosmic rays,
phenomena related to atmospheric electricity are also observed. Particularly, events have been
detected with the surface detector, characterized by long-lasting signals (tens of microseconds)
and event footprints much larger (up to 200 km2) than those produced by the highest energy
cosmic rays. Moreover, some of them appear to be accompanied by smaller events occurring in
the same area within about 1ms and probably produced by the same phenomenon. A previously
reported correlation with the World Wide Lightning Location Network, as well as the observation
of very low-altitude clouds, confirm that such events are related to thunderstorms. An ad-hoc
reconstruction points to high-energy particles being produced very close to the ground, suggesting
that they originate from electrons accelerated to relativistic energies in strong electric fields inside
low clouds, as is the case for terrestrial gamma-ray flashes above thunderstorms.
A clear explanation of the observed phenomenon is hindered by two facts. One is that the rate of
such events, detected serendipitously, is very small (less than 2 events/year) and decreases further
after optimization of the surface detector trigger for low-energy shower-events. The second is that
most events show a puzzling lack of signals in the central part of the footprint. We have studied
in detail both effects and will present such studies here. We developed a strategy for a dedicated
trigger to enhance the detection efficiency for these events associated with atmospheric-electricity
events.
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1. Atmospheric electricity phenomena at the Pierre Auger Observatory: SD-rings

The Pierre Auger Observatory [1], designed to detect extensive air showers produced by ultra-
high energy cosmic rays in the atmosphere, can also be used to observe transient phenomena related
to atmospheric electricity. In the fluorescence detector, used to record the evolution of showers in
the atmosphere, peculiar events, associated with elves [2, 3], a type of transient luminous events
occurring in the upper atmosphere above thunderstorms, were discovered serendipitously. In the
surface detector (SD), formed by 1600 water-Cherenkov detectors used to sample shower electrons,
photons and muons, peculiar events have also been observed serendipitously during thunderstorms.
Their features, in footprints and signals, are very different from those produced even by the highest-
energy cosmic rays [4, 5].

At the Telescope Array (TA), the other large cosmic-ray observatory located in the northern
hemisphere, large signals have also been detected with its scintillators at the time of thunder-
storms [6]. There are differences and similarities between our events and TA events, whose origin
is related to downward Terrestrial Gamma-ray Flashes (TGFs).

A TGF is a burst of high-energy photons originating in thunderstorms [7]. The emission is
generated, via bremsstrahlung, by energetic runaway electrons accelerated by the electric fields in
thunderclouds. TGFs have been routinely observed from space, but, in the last years, evidence
of downward TGFs, occurring during strong initial breakdown pulses in the first few milliseconds
of negative cloud-to-ground and low-altitude intra-cloud flashes, has been reported [6, 8]. The
propagation mechanisms of lightning are poorly understood. Lightning-leaders do not propagate
in a continuous manner, but instead progress in a series of discrete “steps”. The typical duration of
the process is of the order of a millisecond, with the inter-step intervals last some tens of µs. TGFs
can easily saturate detectors far from the source.

At the Pierre Auger Observatory, the first peculiar event was detected in 2005. In the complete
data sample, recorded since 2004, 23 events with the same characteristics have been identified. In
the left panel of Fig. 1, the footprint of one of such events (No. 4067414) is compared with that
of a very energetic cosmic ray (� ≈ 1.4×1020 eV) which triggered 17 stations. In the peculiar
event, the footprint is much larger, with 74 triggered stations. The signals are also very different
from those from air showers, with much larger duration. An example of a signal, lasting tens
of µs, is shown in the panel (f) of Fig. 2: it is an order of magnitude longer than the ones seen
in cosmic-ray events (panels (a) and (b)). Moreover, in 2005, it was noted that also stations
with high-frequency noise, (“lightning stations”, panel (d) of Fig. 2), were part of such event,
suggesting that lightning activity had happened at the same time. This hypothesis was verified by
finding a correlation between the peculiar events and lightning strikes collected by the World Wide
Lightning Location Network (WWLLN). As the Observatory makes use of the atmosphere as a
giant calorimeter, several atmospheric-monitoring facilities are available, such as lasers, LIDARs,
cloud cameras [11]. Although no atmospheric data were available at the exact time of the event
shown in Fig. 1, the cloud cameras, operating only during the nightly data-taking of the FD, reported
a 100% cloud coverage some hours before and/or after the event, with clouds estimated from lasers
and LIDARs to be ∼2 km above ground level, suggesting that it occurred during bad weather and
with very low clouds.

The most puzzling feature of this event, and of other peculiar events, is the lack of signals in
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Figure 1: Left: Typical footprint of an SD-ring compared to that of a very high-energy cosmic ray. Right:
Zoom of the SD-ring footprint: long-signal stations are marked in blue, lightning stations with stars, muon
stations with crosses. Red and magenta dots represent, respectively, the overshoot stations and the stations
in error state at the overshoot time (“lost overshoot stations”) in an event registered about 500 µs after the
SD-ring.

the center of the footprint. We refer to these as SD-rings. Investigations, described below, have
established that this feature is an artifact arising from the recording system that was, of course,
optimized for the detection of air showers. Accordingly a new trigger to change the read-out of the
events has been devised (Sec. 4) and a new approach is being developed to understand the origin of
these peculiar events.

2. SD rings revisited

Premise The revisiting of the SD-rings was guided by the hypothesis that the lack of signals in
the center is due either to electronics, or trigger or data acquisition, or post-acquisition processing,
or any combination of these. All systems are optimised for the rate, shape and signals of showers
generated by ultra-high energy cosmic rays. Details are in [1] and in [9] and only a summary of
relevant elements is given here.

The Cherenkov signals in each SD station are collected by three photomultipliers and digitised
using 40MHz, 10-bit Flash Analog-to-Digital Converters (FADCs). Based on these signals, the
local data acquisition generates low-level triggers, at∼20Hz. Such local triggers have been designed
to respond to signals typical of air showers, i.e., to large signals not necessarily spread in time, such
as those close to the core, or to sequences of small signals spread in time, such as those near the core
in low-energy showers, or far from the core in high-energy ones. When the station signal satisfies
one of the local trigger conditions, a time block of 19.2 µs from the FADC is copied to a buffer, in
“stand-by” for a possible shower trigger. The block length has been adapted to the signal duration of
a shower, taking, as a conservative reference, the length of a signal expected in a shower of 1021 eV
far from the core. The timing of each local trigger is sent to the central data acquisition system
(CDAS), which searches for spatial and temporal correlations among all triggered stations. Once a
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Figure 2: Collection of signals observed in events detected with the SD stations. The three different colors
represent the signals from the 3 photomultipliers looking down in the water in each station. (a) and (b) are
signals typical of showers, close to (a) and far from (b) the core, respectively. (c) is a signal due to a cosmic
muon, usually found in accidentally triggered stations. (d) is a so-called lightning signal, dominated by high
frequency noise. (e, f, g, h, l, m, and n), are examples of the so-called long signals: (e) and (f) are complete
signals, (g) and (h) are saturated signals, (l) and (m) are the rising and falling portion of a very long signal
which is not contained in a unique trace, (n) is the result of the combination of (l) and (m). Finally, (i) is a
so-called overshoot, an electronic artefact caused by preceding saturated signals.

coincidence of at least 3 or 4 stations is found, a shower trigger is formed, generating a request for
the buffered FADC traces from relevant stations. The response of the stations is also monitored by
CDAS, which ultimately “builds” the events. The rate of the shower trigger is ∼0.1Hz. Note that,
besides showers events, the CDAS records other auxiliary data-streams: the list of local triggers
is continuously archived, along with control and monitoring data that describe the status of the
detectors and of the CDAS.

Investigation of SD-rings Although SD-ring events are very different from those produced by air
showers, we based our investigation on a similarity. SD-rings are characterized by the involvement
of a large number of stations. This is also a characteristic of horizontal showers (zenith angle <
60◦) [10], in which the number of triggered stations can reach 80 and more. In such high-
multiplicity events, it may happen that two or more shower triggers are identified by CDAS, because
of the transit-time of the shower over the array. This artificial splitting is corrected in the post-
acquisition process that merges separate triggers into a unique event, assuming that the split event
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Figure 3: Left: Time sequence of the events recorded within 1ms from the exemplary SD-ring (blue
histogram). The late event (red histogram) includes only stations with overshoot signals. See text for details.
Right: Triggered stations of the first three events. The stations of the two events preceding the SD-ring are in
its footprint (blue markers). The dots represent stations that returned traces to the CDAS, while the triangles
represent stations which answered with an error message.

is a shower propagating across the stations at the speed of the light. Most SD-rings are also the
result of the merger of two or more shower triggers. Some long signals are the result of a merger
too, as sometimes very long signals are divided into two trace blocks, as that shown in the panel (n)
of Fig. 2, that was originally halved by the electronics as shown in (l) and (m) of the same figure.

As SD-rings show a longer and more complex time and space evolution than air showers, we
searched for additional central triggers in a time interval of ±2.5ms with respect to the SD-ring
time finding accompanying events for all the identified SD-rings. Inspection of these companions,
together with information from the CDAS auxiliary files, allowed us to draw inferences on both the
spatial and timing structure of the SD-rings. To illustrate our findings, and for the sake of simplicity,
we discuss here only the investigation of one example, shown in Fig. 1.

Around the time of this event, we found three other triggers within 1ms, as shown in Fig. 3
(left), two before (orange and green histograms) and one after (red histogram). The time of the SD-
ring is represented by the blue histogram. Each of the four histograms shows the time distribution of
the stations with a signal. Remarkably the stations involved in the two preceding events are all in the
footprint of the SD-ring, as evident in Fig. 3, right. The stations that returned successfully FADC
traces (marked with dots in the figure) are due to lightning noise or muon signals. Other stations
(marked with triangles) are instead in error state, meaning that they participated in the event, but
they were unable to return their traces. We observed the same behaviour for all other events tagged
as SD-rings, finding, in some cases, “long-signal” stations in the events preceding the SD-ring. In
no case the sequence of events is “speed-of-light compatible” with a single point-source. That they
happen in the very same region of the array, and in a very short time, hints at a common source
generated by a phenomenon with a long time evolution. The long signals in the preceding events
and in the SD-ring might in fact be lost for instrumental reasons.

Similarly remarkable is the event recorded about 500 µs after the SD-ring. This includes 13
stations, marked in the right panel of Fig. 1 with red and magenta dots: the former correspond to
those that returned FADC traces to the CDAS, while the latter sent back, instead, an error message.
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As one can see, the stations in the late event are, in part, the same as in the SD-ring (blue markers),
and, in part, they fill the central hole.

The traces from the “not-in-error” stations, however, correspond neither to showers, nor to
lightning, nor to long-signals. One such signals is shown in the panel (i) of Fig. 2: it consists of a
linear rise of the ADC values with little noise, the typical signal due to an overshoot of electronics.
We know, from laboratory measurements, that overshoot signals may trigger the stations, and, from
the electronics, we expect that the undershoot following large signals recovers and turns into an
overshoot1 after about 400 to 500 µs. In two out of the five “not-in-error” stations, we found that the
late overshoot-signal corresponded to a long signal in an SD-ring, happened about 500 µs earlier, as
expected from the response of our electronics to a large, saturated, signal. However, not all stations
that were triggered by a long signal in the preceding SD-ring show an overshoot in the late event. A
plausible explanation for this is the timing of the overshoots compared to that used to form a shower
trigger. The algorithm for the latter allows for only an 8 µs time difference between neighbouring
stations to form a coincidence. The probability of a station not triggering in time from an overshoot
is thus fairly high, given that the time scale of the overshoot is much larger than the coincidence time
that is tuned for shower signals. This also explains why no central triggers due to overshoots are
found following most SD rings: if signals are not large enough and the FADCs are barely saturated,
the chance of having three stations with overshoot signals in coincidence is small. In turn, not all
stations with an overshoot signal in the late event, have a preceding long signal. Two of the five
“not-in-error” stations were triggered in the SD-ring by a random muon and by a lightning. The
fifth was not triggered, although we know, from analysis of the trigger-list auxiliary file, that the
station was functioning at the time of detection of the SD-ring. In other words, the large signals in
these three stations were missed from the data acquisition, probably due to the local trigger. This
ensemble of observations, most notably that of the presence of overshoot signals following large
saturated signals, allowed us to conclude that the central hole in SD-rings is very likely an artifact
of the trigger and acquisition chain. This conclusion motivated the development of an ad-hoc local
trigger discussed below.

3. SD rings versus SD disks

While most of the 23 peculiar events are classified as SD-rings, a few of them, dubbed SD-disks,
are characterised by compact footprints. Two examples are shown in Fig. 4.

Small and large SD-disks have similar characteristics, but differ from those of SD-rings. The
stations involved in SD-disks exhibit long signals but all are of low amplitude. In SD-rings low-
amplitude signals are found, in fact, but they are exceptions. Moreover, in the case of SD-disks, we
have not found evidence of other central triggers in the same millisecond, as we did for SD-rings.
To understand this difference, we have compared in detail the large SD-disk shown in Fig. 4, right,
with an exemplary ring-event, using the CDAS archive list of all local triggers. These files store
information on the station, trigger type, and trigger time. The level of trigger activity was very
high in both events:2 the SD-ring had 591 requested traces, 278 recorded traces, 994 local triggers

1Local triggers due to overshoots, however, usually do not lead to shower triggers, because in shower events the
number of stations having such a large signal is very small, mostly one.

2This amount of triggers has to be compared with the background expectation of #bg ≈ 20Hz× 1600× 0.01 s = 330,
and the number of T3s with the normal T3 rate of about 0.05Hz.
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Figure 4: Footprint of a small (left) and large (right) compact event or SD-disk. In the latter, the long-signal
stations (blue dots) are concentrated in a footprint with a radius of about 5 km. The farthest blue dots are
false positives of our selection algorithm.

in 10ms, while the SD-disk had 735 requested traces, 720 recorded traces, 1082 local triggers in
10ms. However, even if in the 10ms interval around the trigger time of the central station there are
in the SD-disk some 100 triggers more across the array than in the SD-ring, this higher number of
triggers was readout in only two central triggers, compared to 11 for the SD-ring. This suggests a
larger coherence of the signals in the SD-disk than in the SD-ring.

We have made a conservative estimate of the energy deposited in SD-rings and in SD-disks
using only the signal visible in the acquired portion of trace and took the average of all stations
with signal. Events with a compact footprint or small SD-rings (radius < 3 km) are characterized
by an energy deposit from 500 to 1700MeV/m2, while for the SD-rings with a larger footprint the
deposits range from 3000 to 6500MeV/m2.

Finally, it is interesting to note the peculiar morphology of the SD-disk shown in the right panel
of Fig. 4. The long-signal stations (marked by blue dots) were concentrated in a footprint with a
radius of about 5 km, but almost the whole array was in fact triggered. The signals marked with
black stars were due to lightning, at the same time as the others, thus pointing to an exceptional
atmospheric event.

4. Perspectives

While the studies presented allowed us to better understand these peculiar events, their rarity and
the lack of complete information do not allow strong inferences as to their origin. Our findings hint
at a link between them and TGFs. We found accompanying events within 1ms of all of our SD-rings,
and know, from previous studies [4], that the single central trigger covers tens of microseconds.
These observations are compatible with the evolution of the lightning leaders associated with TGFs.
Moreover the presence of low clouds at the time of some of events is consistent with the expectations
for downward TGFs. From laser and LIDAR measurements, we know that at the time of some
other events, such as that in Fig. 4-right, the clouds were higher. One could infer that the footprint
is larger at ground as the altitude of the source increases. If we consider additionally the lightning
stations, the high rate of which, during thunderstorms, may have prevented the acquisition of long
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signals in the external part of the event, the footprint of this event could be much larger. Finally,
the observed peculiar events seem to be intense phenomena, with energy deposits two orders of
magnitude larger than in a vertical shower initiated by a particle of 1019 eV. We find the energy
density to be comparable to that measured at 650m from the source with NaI scintillators by Dwyer
et al. [12]. NaI has an efficient response to photons as do the water-Cherenkov detectors.

The collection of a larger number of such events, and especially of more complete ones, is
key to interpret these events. The 23 events detected at the observatory are actually not uniformly
distributed in time because of a change to the shower trigger system in 2014 to enhance detection of
low energy events. This raised the number of central triggers during periods with lightning activity
perhaps explaining the observed decrease in the rate of SD-rings. This problem could be reduced
by modifying the CDAS read-out logic to give priority to events which contain long signals. An
algorithm to tag such kind of signals has been recently developed using differences of integrals
performed over predefined parts of the trace. The concept is that the oscillating features of the
lightning noise will average out if the integral is used instead of the peak. Moreover, the trigger
algorithm will be independent of the baseline, making it robust against undershoots or overshoots.
This change has been implemented in a small part of the SD array. No problems in the normal
data-taking were observed. We plan to extend it to the whole array before the next austral summer,
when intense thunderstorms are expected.

Crucial to the understanding of the phenomenon creating the peculiar events will be the
exploitation of data from instruments recently installed at the observatory that can monitor lightning
and electric field at ground, such as Boltek Storm trackers and E-field mills. Measurements can
be correlated with the information from the water-Cherenkov detectors and from the scintillators
being installed above each SD station. Finally, the radio antennas that form the Auger Engineering
Radio Array, as well as those that will be installed on each SD stations, can also be used as sensors
of atmospheric electricity.

Acknowledgments The authors wish to thank the World Wide Lightning Location Network
(wwlln.net), for providing the lightning location data used in this paper.
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