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1. Introduction

The flux of TeV–PeV cosmic-rays (CRs) at Earth is anisotropic at a level of ∼ 10−3, [see e.g.
1, 2, for reviews]. The direction of the large-scale CR anisotropy (CRA) is broadly consistent with
that of the local interstellar magnetic field [3], though its shape cannot be described by a pure
dipole [4]. For instance, IceCube and IceTop data at ≥ 100TeV energies hint at a flattening of
the CR intensity in directions perpendicular to local magnetic field lines [5]. In the present work,
we first report on how the shape of the large-scale CRA depends on the properties of the local
interstellar turbulence within about a CR mean free path from Earth. We then illustrate and test the
main assumptions of previous theoretical predictions [5] by extending the numerical simulations
of Ref. [6] down to TeV energies. The CRA is calculated in different realizations of 3D isotropic
Kolmogorov turbulence for a realistic ratio of the CR gyroradius to the turbulence coherence length.

2. Theoretical considerations on the shape of the large-scale CRA

The gyroradius of TeV–PeV CR (∼ 10−4 − 10−1 pc) is substantially smaller than the typical
coherence length of the interstellar turbulence lc ∼ 1 − 10 pc [7], and CRs are thus expected to
diffuse preferentially along magnetic field lines. The fact that the observed CRA points in the
direction of the local magnetic field [3] corroborates this expectation. Assuming that CR undergo
pitch-angle diffusion in a 1D magnetic flux tube of length d ≤ lc, which contains the Earth, it was
shown in Ref. [5] that, under the assumptions of quasi-stationarity, the CRA at Earth is proportional
to:

g(µ) =

∫ µ
0 dµ′

(
1 − µ′2

)
/Dµ′µ′∫ 1

0 dµ′
(
1 − µ′2

)
/Dµ′µ′

, (1)

where µ = cos θ, with θ the pitch-angle (angle between the direction of the ordered magnetic
field and the CR momentum), and Dµµ is the pitch-angle diffusion coefficient, assumed to be
homogeneous in the flux tube. Eq. (1) is valid as long as the CR mean free path is smaller than a
few times d, see [5] for more details. The amplitude of the CRA depends on the a priori unknown
value of the CR flux in the magnetic flux tube, but its shape does not. Therefore, we work with g(µ)
which corresponds to the CRA with its amplitude scaled to 1. Eq. (20) of Ref. [5] expresses Dµµ

as a function of a resonance function Rn, for which the following two forms were investigated; one
with a narrow, “N”, and broad, “B” resonance:

RN
n =

τ−1

(k ‖v‖ − ω + nΩ)2 + τ−2 , and RB
n =

√
π��k ‖ �� v⊥δM1/2

A

exp

(
−
(k ‖v‖ − ω + nΩ)2

k2
‖
v2
⊥δMA

)
, (2)

where k ‖ is the parallel (field-aligned) component of the wavevector, v‖ = cµ, v⊥ = c
√

1 − µ2, ω
is the angular frequency of the waves, Ω the CR gyrofrequency, and n = 0,±1 in our calculations.
For RN

n , the broadening of the resonance is assumed to be dominated by the Lagrangian correlation
time of the turbulence, τ, while for RB

n , by fluctuations of the parallel magnetic field strength,
which is encapsulated in the parameter δMA < 1. We test two models of turbulence: Fast
magnetosonic mode turbulence with an isotropic power spectrum IF(k) ∝ k−3/2 [8] and so-called
Goldreich-Sridhar turbulence whose Alfvén and pseudo-Alfvén modes have the power spectrum
IA,S(k) ∝ k−10/3

⊥ exp(−k ‖ l1/3/k2/3
⊥ ) [9], where l denotes the outer scale of the turbulence.
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Figure 1: Pitch-angle scattering rate ν(µ) (upper left), anisotropy g(µ) (lower left), and relative CR intensity
versus right ascension in the field of view of IceTop (middle column), for three models of the interstellar
turbulence: Fast mode turbulence with ε = 10−3 and with either RN

n and uA = 10 km/s (dashed purple lines)
or RB

n and δMA = 0.1 (dashed blue lines); Goldreich-Sridhar turbulence with RB
n , δMA = 0.33, and ε = 10−2

(solid red lines) or ε = 10−3 (solid orange lines). Also shown are the 2 PeV (upper middle) and 400 TeV
(lower middle) data taken from Ref. [4]. Right column: CRA in equatorial coordinates for the dashed purple
lines (upper panel), and the solid orange ones (lower panel).

In Fig. 1, we present our calculations of the dimensionless pitch-angle scattering rate ν(µ) =
2Dµµ/(1 − µ2) × (l/c) (upper left panel), and normalized large-scale CRA, g(µ) (lower left panel),
for these models. The dashed lines are for fast mode turbulence, and the solid ones for Goldreich-
Sridhar turbulence. In the middle column of Fig. 1, we plot the relative CR intensity versus right
ascension in the field of view of IceTop experiment, which observes part of the Southern hemisphere,
and compare with its 2 PeV (top, green boxes) and 400 TeV (bottom, blue boxes) data [4]. The
dashed purple lines correspond to fast mode turbulence with the narrow resonance function RN

n ,
and with τ calculated for an Alfvén velocity equal to uA = 10 km/s —see [5] for more details. We
set here the dimensionless CR rigidity to ε = c/(lΩ) = 10−3. For this turbulence, ε only changes
the normalization of ν(µ), and not the shape of the CRA, g(µ). As can be seen in the upper left
panel, ν has a very narrow peak around µ = 0, which means that pitch-angle scattering is strongly
enhanced for CRs whose momenta are almost perpendicular to the local coherent field. This peak is
due to the n = 0 term in the expression for Dµµ. At small |µ|, and on both sides of the peak, ν goes
through a minimum and recovers at µ→ ±1. Since the derivative of g(µ) is proportional to 1/ν (cf.
Eq. (1)), this results in a CRA that strongly varies at small values of |µ|, and has broad, almost flat
minima and maxima at |µ| ≥ 0.5, see the lower left panel. For comparison, the thin black dotted
line shows g(µ) = µ which corresponds to a dipole anisotropy. The anisotropy for the purple line
is clearly not a dipole. For a better visualisation, we plot it in equatorial coordinates in the upper
right panel of Fig. 1, assuming that its direction is given by that of the local coherent field measured
by [10, 11]. By comparing with Fig. 6 of Ref. [4], one can see by eye that the shape of the CRA
in the Southern hemisphere is very different from that measured by IceTop. This can also be seen
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in the upper middle panel, where we compare the resulting CR intensity with IceTop 2 PeV data.
In general, we find that models with RN

n provide a bad match to the observations, which apparently
require a flattening of g in a moderately broad region around µ = 0, and hence a broad “bump” in
ν around µ = 0. RB

n gives a better fit to the data: we show with dashed blue lines the results for
fast modes with RB

n and δMA = 0.1. ν has a broad bump at |µ| < 0.5 and minima at µ ' ±0.5.
This results in a CRA with a broad flat region at |µ| < 0.5 and with two extrema whose angular
half-widths are smaller than those of a dipole, see the lower left panel. This model provides a good
fit to the 2 PeV IceTop data, with a flat CR intensity at RA ≥ 160◦, and a small cold spot around
RA ' 80 − 90◦. However, the smaller angular size of the cold spot in the 400 TeV data set cannot
be well fitted with this model. If this change in the size of the cold spot with CR energy is real, this
may point at an anisotropy in the power spectrum of the turbulence: If the anisotropy in Fourier
space varies with |k|, then CR with different energies interact with modes whose level of anisotropy
is different. Goldreich-Sridhar turbulence is anisotropic, and the level of anisotropy of its modes in
k-space varies with |k|. Solid lines show results for this turbulence with RB

n and δMA = 0.33. The
red lines are for ε = 10−2, and the orange ones are for ε = 10−3. The ratio of these two values of
ε is similar to the ratio of the energies of the two IceTop data sets — the factor 2 difference does
not affect our conclusions and is only due to the binninig in energy we chose for our scan of the
parameter space. The scattering rate (upper left) is lower than for fast mode turbulence, but also
presents broad maxima around µ = 0. The maximum is broader for ε = 10−3 than for ε = 10−2,
and the CRA (lower left) flattens at |µ| < 0.7 for ε = 10−3 and at |µ| < 0.5 for ε = 10−2. The lower
right panel shows the CRA for ε = 10−3 in equatorial coordinates. A small hot spot and a small
cold spot are visible in the direction of the coherent magnetic field (µ = ±1). They are separated
by a wide magenta region, where the CR intensity is very flat. The two data sets from IceTop can
be well fitted with this model of turbulence: The calculations for ε = 10−2 are compatible with
the shape of the measured CR intensity at 2 PeV (see the red line in the upper middle panel), and
ε = 10−3 fits well the 400 TeV data (see the orange line in the lower middle panel).

3. Numerical simulations of the CRA down to 3 TeV energies

In the above analytical calculations, we made the assumption of gyrotropy. In this section, we
investigate numerically the validity of this assumption. We propagate individual CRs in different
realizations of 3D isotropic Kolmogorov turbulence and calculate the CRA, using the backtracking
method described in Ref. [6]. We consider here, for the first time, CR with energies as low as 3 TeV.
This is more than 3 orders of magnitude smaller than the energies probed in Ref. [6], and, therefore,
requires substantially longer calculation times. This value of 3 TeV is in the relevant range for a
direct comparison with the low energy measurements of the CRA at TeV energies. We note that,
at even lower CR energies, time variations of the local turbulence would start to make small-scale
features of the CRA vary on time scales smaller than the typical lifetime of an experiment, assuming
local fluid and Alfvén velocities of a few tens of km/s. We do not investigate this regime here.
We use turbulence with root-mean-square strength Brms = 4 µG, and outer scale l = 150 pc, which
corresponds to lc = 30 pc. The only difference between our numerical technique here and that of
Ref. [6] is that we propagate here CRs to finite distances ct (as in Ref. [12]), instead of stopping the
trajectories on a sphere with a fixed radius. This difference is unimportant for the purpose of the
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Realization 1

 0.994   0.996   0.998   1   1.002   1.004

Realization 2

 0.996   0.998   1   1.002   1.004  

Figure 2: Numerical calculations of the relative CR flux at 3 TeV in two different realizations of 3D isotropic
Kolmogorov turbulence with Brms = 4 µG and l = 150 pc. The CR intensity in these maps is averaged over
10◦-radius circles.

present study. We propagate CRs to distances of a few hundreds of pc, until the CRA converges. The
angular shape of the CRA converges quickly, after about a CRmean free path. However, its absolute
amplitude converges only after the CRs have probed distances greater than a few coherence lengths
of the turbulence. For shorter distances, the centre of mass of a set of initially nearby trajectories
still strongly depends on the bending of local magnetic field lines around the observer.

In Fig. 2, we show two sky maps of the relative CR flux (normalized to the angle-averaged
flux) at 3 TeV in two different realizations of the turbulence, and averaged over 10◦-radius circles.
As expected, the direction of the large-scale anisotropy is found to point in the direction of local
magnetic field lines around the observer in both simulations. We do not add any regular field to the
turbulence: the local coherent field is provided by the modes whose wavelengths are much larger
than the CR gyroradius. The two panels in Fig. 2 show two limiting cases. In the left panel, the local
turbulence level on the scale of a 3 TeV CR gyroradius, and within a CR mean free path from the
observer, is quite small in this realization. The anisotropy looks very smooth and almost perfectly
gyrotropic. In the right panel, the local turbulence level happens to be higher in that realization. The
anisotropy looks less regular, with non-gyrotropic small-scale fluctuations that are well above the
numerical noise level. This confirms that the mechanism suggested in [6] for creating small-scale
anisotropies also works at energies of a few TeV. In all these simulations, the amplitude of “non-
gyrotropic” small-scale anisotropies is substantially smaller than that of the large-scale anisotropy.
This is in line with observations, which suggest that the amplitude of small-scale anisotropies is
about an order of magnitude smaller than that of the large-scale anisotropy. This also justifies the
assumption of gyrotropy in the calculations of g(µ) in the previous section.

In Fig. 3, we plot our calculation of the gyrophase-averaged relative CR flux, F, versus µ for
one of our simulations. The shape of g(µ) (∝ F(µ) − 1) shows some variations from one realization
of the turbulence to another, but all cases we tested show a flattening of g(µ) at |µ| < 0.25 − 0.5.
This tends to suggest that the CR pitch-angle scattering rate in 3D isotropic Kolmogorov turbulence
may too have a broad bump around µ = 0.
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Figure 3: Numerical calculation of the
gyrophase-averaged relative CR flux F(µ),
at 3 TeV, for an observer in a given realiza-
tion of 3D isotropic Kolmogorov turbu-
lence with Brms = 4 µG and l = 150 pc.

4. Discussion

Both IceCube [13] andHAWC [14] have providedmeasurements of the angular power spectrum
of the CRA. We have shown in Section 2 that the large-scale CRA g(µ) is not a pure dipole, except
in the unphysical case of isotropic CR pitch-angle scattering where Dµµ ∝ 1 − µ2. Therefore, a
fraction of the power in the C`’s, including those with ` ≥ 2, should be due to multipoles pointing
roughly in the direction of local magnetic field lines. Among the several small-scale anisotropies
detected by HAWC, one of them does not seem to vary substantially with CR energy: A small
hot spot, located roughly in the direction of RA ∼ 60◦ and slightly below dec = 0◦, remains at
almost the same place on the sky from 2.0 TeV to 72.8 TeV, see Figs. 10 and 9 in Ref. [14]. When
comparing with the Figs. 4 and 5 of Ref. [14], it seems that the direction of this hot spot is quite
roughly compatible with that of the large-scale anisotropy. We suggest here that this hot spot may
be an additional sign that the “large-scale” anisotropy pointing in the direction of magnetic field
lines deviates from a dipole and contains high-order multipoles. This would naturally account for
the apparent stability of this spot with energy. From a conceptual point of view, this suggestion and
our study in Section 2 contain similarities with the suggestion of Ref. [15] for the origin of one of
Milagro’s hotspots, “Region A”. However, our study differs in particular by the fact that we have
used here the full general solution of the CR transport equation. We also note that the maximum
significance of Milagro’s Region A is around dec ' 10◦ − 20◦ (see Fig. 1 of Ref. [16]), which is
' 20◦ away from the centre of HAWC’s hot spot, and that Region A does not coincide with the
direction of the maximum of the large-scale anisotropy as is visible in Fig. 2 of Ref. [16]. Some
of these apparent differences may just be due to the different exposures of these experiments and
data analysis techniques. A deeper study of these points would nonetheless be necessary in order
to reach a firm conclusion on the origin of this particular hot spot in HAWC data.

The other small-scale anisotropies detected by HAWC, as well as those detected by IceCube,
are not aligned with the large-scale anisotropy and require another explanation. They imply that
the CR distribution at Earth is not perfectly gyrotropic. The mechanism discussed in Section 3,
and initially presented in Ref. [6], provides a natural explanation for them. Below a few TeV,
heliospheric magnetic fields may too generate small-scale anisotropies for similar reasons, see e.g.
Ref. [17]. In any case, the fact that “non-gyrotropic” small-scale anisotropies have been detected at
20 TeV energy by IceCube [13] suggests that the mechanism of Ref. [6] should be at work, at least
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above several TeV.

5. Conclusions

Assuming pitch-angle diffusion of TeV–PeV CR in our local interstellar medium, we show that
their large-scale anisotropy at Earth, g(µ), is in general not a dipole, see Section 2. g(µ) contains
information on the local interstellar turbulence and CR propagation properties. Moderately broad
resonance functions are favoured, and the 2 PeV data set of IceTop can be fitted with isotropic fast
modes or Goldreich-Sridhar turbulence. Thanks to its |k|-dependent power spectrum, the latter
type of turbulence can also explain the change in shape of the CRA between the 400 TeV and
the 2 PeV data sets of IceTop. In Section 3, we present our first numerical calculations of the
CRA in 3D isotropic Kolmogorov turbulence down to 3 TeV. We find that g(µ) has a flattening in
directions around µ = 0 in this type of turbulence too. At these low energies, the CRA aligns well
with the direction of local magnetic field lines around the observer and is quite gyrotropic. Weak,
“non-gyrotropic” small-scale anisotropies do nonetheless appear due to the local configuration of
the turbulence around the observer at the time of the observations, as initially suggested in Ref. [6].
Their amplitude, which is always much smaller than that of the large-scale anisotropy g(µ), is
connected to the turbulence level on resonant scales in our local magnetic flux tube.
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