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1. Introduction

It is now firmly established that continuous acceleration of energetic particles is required to
account for multi-wavelength observations of extra-galactic jets, both in X-ray [1] and gamma-
ray [2]. The physical process underlying this energisation remains an open question, though it
must be able to overcome the relatively short cooling times, demanding that a fast acceleration
mechanism is at play. A promising candidate in this regard is the shear acceleration mechanism [3],
whereby particles gain energy due to repeated scattering on magnetic waves/inhomogeneities that
are advected with the non-uniform flow.

Since shear acceleration is a second-order Fermi process, it becomes increasingly effective as
the relative flow velocities increase, particularly for the case of sharp gradients in the velocity flow
profile. To see this, consider the idealised case of a cylindrical jet with symmetric axial flow profile
#(A) = 1

2 Vjet [1 − tanh((A − Ajet)/!))] ẑ, where Vjet is the jet speed on the axis in units of 2, and !
determines the thickness of the shear layer. For particles with Larmor radius Ag � !, the shear
layer is smooth, and the acceleration time is well known [e.g. 4]

2Cacc
Ag
≈ 15

4 + U
Ag

2C ′scat

(!/Ag)2

V2
jet

[
1 + 4

(
2C ′scat
Ag

)2
]
. (1)

Here C ′scat ∝ WU is the scattering time in the local fluid frame, with W the Lorentz factor of the
accelerating particles. The term in square brackets on the right-hand side is due to the guide field,
which, being frozen into a shearing flow, should only have components in the I − \ plane, as
large scale components in the radial direction will be sheared. Thus, unless the mean free path
is less than the gyro-radius, i.e. the particles are unmagnetised, the ability of particles to sample
the large velocity gradients is inhibited, and acceleration is slow relative to its gyration period (i.e
substantially sub-Bohm).

In the opposite limit, Ag � !, particles effectively see the shear layer as a discontinuity. In this
case, to a good approximation, we can assume that the particle energy is conserved while scattering
in the local frame. Performing Lorentz transformations at each crossing, and assuming W � Γjet,
where Γjet = (1 − V2

jet)−1/2 is the jet Lorentz factor on the axis, we can easily calculate the energy
jump per cycle as a function of the crossing angles. Defining `1(2) = cos \1(2) as the pitch angle of
in-going (out-going) particles with respect to the I-axis, measured on crossing the surface A = Ajet,
the ratio of energies is

�final
�init

=
1

Γ2
jet(1 + Vjet`

′
1) (1 − Vjet`2)

. (2)

Here, the initial and final energies are measured in the “ambient” frame (A > Ajet), and primed
quantities are measured in the “jet” frame. If particles are isotropised in each region before
crossing back in to the other side of the shear boundary, relative to an observer in the opposite
frame, the incoming particles will appear like a beam i.e. `2 ≈ −`′1 ≈ Vjet. Energy boosts as large
as 4Γ2

jet are in theory achievable. Thus, for ultra-relativistic jets, the per-cycle acceleration due to
crossing the shear layer can be substantial. However, the assumption of isotropisation limits the
cycle time to be at least as long as the isotropisation time. In practice, the acceleration time is
determined by competition between these two effects, namely themean cycle time and the associated
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mean energy kick per cycle. As with Fermi acceleration at ultra-relativistic shocks [5], we will find
that the mean energy kick per cycle is of order unity.

To verify this claim, and to develop a deeper understanding of the relevant physical constraints,
we have performed a numerical analysis of discontinuous shear using Monte-Carlo simulations.
Previous numerical investigations into the process have, to our knowledge, exclusively relied on
random scattering approaches i.e. particles are scattered in angle according to some prescription,
their energy being conserved in the local fluid frame in each scattering [e.g. 6]. As we show
in the following discussion, this tends to be a gross simplification of the problem, and overlooks
geometrical constraints on the field structure in the vicinity of the shear layer boundary. These
constraints turn out to be critical for the particle transport close to the shear layer, and result in
significantly different scaling to the acceleration times than is implied by a naive application of the
random scattering approach.

2. Methods

The preferred approach to the simulation of turbulent fields in the literature relies on the
superposition of Fourier plane modes [7]. In the context of sheared flows, in which the inner and
outer volumes must move relative to one another, this raises considerations of solenoidality which
require particular attention. In this work, we expand on the adoption of Bessel modes for the
representation of fields in cylindrical jets by previous authors [e.g. 8].

A natural consequence of our solenoidal field prescription is dependency of the local field
correlation scale on the distance from the shear discontinuity. This effectively suppresses fluctua-
tions in the field at the scale of the distance from the boundary. The role of different kinetic and
fluid instabilities on the jet interface is an open question [9, 10], but the collimation out to several
kiloparsecs observed in many high-power jets generally indicate that stability can be maintained
over large distances. We note that scaling laws for turbulence suppression in shearing flows have
been studied by various authors as a mechanism for the stabilization of turbulence in tokamak
plasmas [11–13].

Motivated by this discussion, radial dependency of the magnetic field correlation scale in the
region of the shear discontinuity is modeled via the ansatz

;c(A) ∼
{
|ΔA |, |ΔA | < ;0c ,
;0c , |ΔA | ≥ ;0c ,

(3)

where ΔA ≡ A − Ajet. Assuming an isotropic power spectrum 〈�2〉(A) =
∫ _max

0 ((_)d_ specified by
the power-law ((:) = �_@ yields a representative field variance

〈�2〉 ∼

�2

0

(
|ΔA |
;0c

)@−1
, |ΔA | < ;0c ,

�2
0
Ajet
A
, |ΔA | ≥ ;0c ,

(4)

where � is a fixed normalisation constant determined by �0. Figure 1 confirms that this scaling
holds in the simulated fields for Kolmogorov turbulence with @ = 5/3.

Particle motions within the synthetic field are obtained via a new Boris-type integrator which
properly conserves phase space volume (and hence has excellent energy conservation properties)

3



P
o
S
(
I
C
R
C
2
0
2
1
)
4
9
1

Particle acceleration at the discontinuous flow boundary of collimated cylindrical jetsStephen O’Sullivan

10−6

10−3

1

10−9 10−6 10−3 1 103

∝ ( |ΔA |/Ajet)2/3 ∝ ( |ΔA |/Ajet)−1

〈�
2 〉
/�

2 0

|ΔA |/Ajet

A > Ajet

A < Ajet

Figure 1: Magnetic field power as a function of displacement from shear discontinuity. The solid/dashed
line indicates the power on the exterior/interior of the jet. Guidelines scale as @ − 1 = 2/3 for Kolmogorov
turbulence within ∼ ;c of the discontinuity, and −1 otherwise.

and operates efficiently over a large dynamic range. Additionally, it does not suffer from the fictitious
forces identified by Vay in studies of the conventional Boris solver [14]. A sample trajectory is
shown in Figure 2.

3. Results

In order to understand the results from simulated particle motions, it is helpful to first consider
the return frequency distribution function obtained from large ensembles. This distribution function
records the binned return frequency over a single cycle. Particles are injected isotropically on the
interior of the jet, with the energy such that a prescribed reference value would be realised on
perpendicular exit into the ambient medium. An initial particle energy delta distribution is ensured
by resetting the particles to the reference value on their initial crossing into the exterior volume.
From this point, a complete acceleration cycle for a given particle is measured between the two
subsequent times of entry into the jet. Wefind this approach effective in capturing the behaviour of an
adequately relaxed population ofmonoenergetic particles. Alongwith return frequency distribution,
insight is also provided by considering the corresponding log-energy boost distribution. From these
two distribution functions, the resultant acceleration rate (i.e. inverse of the acceleration time) can
be both derived and easily understood.
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Figure 2: Sample field line integration in the region of a discontinuity for a particle with reference rigidity
d = 10−6. The dashed vertical lines indicate the rectilinear range for the mean acceleration cycle time about
the discontinuity. A sample set of projected field lines is shown in the background. Note that no acceleration
is taking place for this illustration (i.e. Γjet = 1).

Examples of these two distribution functions obtained are shown in Fig. 3, for both the "random"
and "field" cases. A shear flow with Γjet = 10, and a turbulent power spectrum with Kolmogorov
scaling has been adopted in both instances.

In order to obtain the acceleration times from these distribution functions, themean acceleration
frequency is calculated using

〈 5acc〉 =

∫
Δln� 5

d#
d 5 d 5∫

d#
d 5 d 5

. (5)

The acceleration time is then defined as Cacc = 1/〈 5acc〉.
In Fig. 3, the acceleration time determined from our simulations for each rigidity particle

group is indicated as a vertical dashed line (with the same corresponding line colour as that for the
rigidity group it is applicable for). Rigidity here is defined by d ≡ Ag/Ajet, where Ag = �/4�0 is
the gyro-radius of a particle with energy � in the reference field �0. As appreciated from both the
"random" and "field" distribution function results shown in Fig. 3, the acceleration time is strongly
dictated by the return time distribution function. Furthermore, the faster growth of the acceleration
time with rigidity for the "field" case compared to the "random" case can be directly appreciated
from the spacing of the vertical dashed lines.
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Figure 3: [Left] The top-panel shows the return frequency distribution obtained from a large ensemble of
particles whose scattering times are dictated by a simple scattering function, which we label "random". The
bottom-panel shows the corresponding energy boost distribution for these particles. [Right] Same as for the
Left case, though here the particles propagated through the turbulent magnetic field setup described in the
section 2, which we label "field". The vertical dashed lines in the figures indicate the acceleration frequency
obtained for different rigidity particle groups (different colours). A shear flow with Γjet = 10 is considered
in each case.

The resultant rigidity dependence of the acceleration time obtained from both the "random"
scattering case, and the "field" realised case, are shown in Fig. 4. As demonstrated by the figure,
considerably faster acceleration is experienced by low-rigidity particles in the "field" case, than in
the reference "random" case.

4. Conclusions

Recent observations suggest in situ acceleration of very energetic electrons along the extent
of extra-galactic jets. Shear acceleration is a promising candidate mechanism for driving the
acceleration. In this work, we consider the limitations of simple scattering models in the context
of physically plausible field configurations. In particular, we focus on the topological constraints
introduced by requiring a solenoidal field in the vicinity of a shear discontinuity and conclude that
such a description may provide an inaccurate picture of the acceleration process.

Eschewing the widely adopted decomposition of synthetic turbulent fields into Fourier plane
waves, we present a naturally cylindrical solenoidal field formulation as a superposition of Fourier-

6



P
o
S
(
I
C
R
C
2
0
2
1
)
4
9
1

Particle acceleration at the discontinuous flow boundary of collimated cylindrical jetsStephen O’Sullivan

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ρ
0.75

ρ
0.33

t a
c
c

ρ

field

random

Figure 4: The rigidity (energy) dependence of the acceleration time for both the "random" and "field" cases.
Time is in units of Ajet/2.

Bessel-type modes. A consequence of this physically motivated field description is an attenuation
of the power from large to small scales with decreasing distance from the discontinuity. Simulations
of particle motion in the field support the conclusion that low energy particles will be accelerated
significantly more efficiently than predicted by simple scattering models. Our results highlight the
necessity for consideration of the detailed magnetic field topology in and around the jet boundaries.
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