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1. Introduction

In recent years, more and more Machine Learning (ML) algorithms have be applied to a broad
variety of open questions in both physics and astrophysics [1]. Among other applications in the
astrophysical and cosmological context, the Fermi-LAT satellite [2] provides a nice laboratory for
ML application, due to the open-access policy of data sharing, that are provided on-line to scientific
community. Indeed, very interesting, around one third of the point-like gamma-ray sources in the
4FGL Fermi-LAT catalogs [3] remain as unidentified (unIDs) today. These unIDs lack a clear,
univocal association with a known astrophysical source identified at other wavelengths, or to a
well-known source-type emitting only in gamma rays (such as certain pulsars). Many efforts have
been already devoted in to apply classification algorithms to such a catalogue of gamma-ray data,
e.g. by constructing probabilistic catalogues of Fermi-LAT unIDs (see e.g. [4] and references
therein). Most of these works focus on classifing unIDs as different types of known astrophysical
sources (e.g Active Galactic Nuclei, pulsars, blazars) [5–8]. Nonetheless, if dark matter (DM) is
composed of Weakly Interacting Massive Particles (WIMPs), there is also the exciting possibility
that some of these unIDs may actually be DM sources, emitting gamma rays byWIMPs annihilation
[9]. In fact, the nature of DM still represents an open question in physics and cosmology, and many
efforts have been devoted to understand the nature of such an unknown constituent of the Universe.
Those efforts include the application of different ML techniques in several related fields (e.g. [10]).
In this work, we propose a novel searchmethodology that uses classification algorithms calibrated to
a mixed sample of both experimental (known astrophysical objects) and theoretical (simulated DM)
data in a derived parameter space, namely what we call the "DM-V" plot, which is defined by both
the pivot energy (�peak) and the curvature (V) of the gamma-ray spectra. With our methodology,
we can correctly classify a promisingly high percent of astrophysical sources, opening a window to
robustly search for DM source association among Fermi-LAT unIDs.

This proceedings is organized as follow: in Section 2.1 we introduce the methodology adopted
in this work (and inspired by [11]), in order to create a theoretically-based DM data set, which
is introduced in the experimental parameter space - i.e. the so-called Fermi-LAT V-plot [11].
Furthermore, we introduce two synthetic features for DM, that are the detection significance f) (
and the relative uncertainty on the curvature VA4;. In Section 3 we train different ML algorithms
both on the benchmark two-features "DM-V" plot and the new four-features parameter space (which
includes the synthetic ones). We find out that we can improve the precision of different ML
classification algorithms (here, Logistic Regression and Artificial Neural Network) by including
these synthetic features. In section 4 we show preliminary results of the classification of the Fermi-
LAT unIDs as prospective DM sources, by applying our best algorithm. The conclusions are traced
in Sec. 5.

2. Methodology

2.1 The "DM-V plot"

The Large Area Telescope (LAT), onboard theFermi satellite [2], has revolutionized the field of
gamma-ray astrophysics since its launch in 2008. Still in operation, Fermi-LAT is a pair conversion
telescope capable to observe gamma-ray photons from energies ∼20 MeV to more than 300 GeV.
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Figure 1: The "DM-V plot", which includes information about the gamma-ray spectra of well-know astrophysical
gamma-ray sources (blue-light data), detected but unIDs sources (red data) and theoretical DM data set (magenta points).

Several point-source catalogs have been released and contain thousands of gamma-ray objects,
many of them previously unknown. The recent 4FGL Fermi-LAT catalogue [3] is a collection of
sources with an associated gamma-ray spectra. The latter can be generally fitted by a Log-Parabola
(LP) [3]

3#

3�
= #0

(
�

�0

)−U−V ·log(�/�0)
, (1)

which spectral features, i.e the curvature V and the pivot energy �?40: = �0 · 4
2−U
2V , represent a

signature of different kind of emitting sources. Indeed, different astrophysical sources - as well as
detected unIDs - occupy different regions in the so-called V-plot, shown in Fig.1. In this plot, the
light-blue points are astrophysical gamma-ray sources, while the red points are detected unIDs.

Similarly, we can predict the gamma-ray spectra of a DM annihilation event by means of Monte
Carlo event generator softwares (e.g. [12]). In fact, WIMPs annihilate in different standard model
(SM) channels, which hadronization and decay processes generate spectra that are footprints of
both the annihilation channel and the energy of the event, i.e. a signature of the DM candidate.
The simulated spectra can be also fitted - as a first approximation - by a LP. Let us remark that
the magenta DM-cloud in Fig. 1 has been created not only with the (�peak, V)DM values obtained
by a model independent hypothesis (i.e. WIMPs annihilating in a single SM channel), but also
considering that DM particles may annihilate in two different SM channels, being the resulting
gamma-ray spectra 3#/3� given by

3#

3�
= �A

(
3#

3�

)
("1

+ (1 − �A )
(
3#

3�

)
("2

(2)

where the branching ratio �A is the probability of a WIMP to annihilate into one of the two
SM channels. This originates different signatures in the spectra. Thus, we consider different
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Figure 2: Histograms of the four features of the balanced data adopted in this analysis (NN), namely characteristic
emission energy �?40: (upper left panel), curvature of the spectra V (upper right panel), detection significance f) (
(lower left panel), relative error on V (lower right panel). In each panel we show the histograms for the classified
astrophysical sources (yellow), unIDs (red) and DM data set (magenta).

combination of two channels with different �A , identifying a well defined region of the "DM-V" plot
(magenta points in Fig. 1) by means of the (�peak, V)DM values obtained by the fit of the resulting
spectra from [13] with the LP in Eq. (1).

2.2 Synthetic features

In the previous section we have introduced a novel methodology in order to introduce the
WIMPs candidates in the V-plot parameter space, which allows us to distinguish and classify
prospective DMcandidates from astrophysical sources, based on their gamma-ray spectra. Nonethe-
less, this kind of training with the only two features of the "DM-V" plot represents a limitation in
the framework of ML in general and Neural Network (NN) in particular. In fact, the collection
of detected sources we aim to classify (here, unIDs) includes a number of features that are not
considered in the theoretical data set. Among other experimental features that we are not able to
"invent" (e.g. position in the sky, time variability, etc.), at least we can model part of the systematic
uncertainty that are naturally included in the experimental data of detected sources (both associated
sources and unIDs), which are not (yet) considered in the theoretical DM data set. In other words,
we have only two features for the theoretical sample (�peak and V), although the unIDs data include
much more information themselves. In order to reduce this limitation, which reduces the precision
of our classification goal (see Sec. 3), we create and include two synthetic features for the DM data
set, i.e. the detection significance (fTS) and the relative error on the spectral index (Vrel = nV/V).
Generally speaking, synthetic features are additional features constructed by existing real features in
order to improve the prediction of the model (see e.g. [14]). Within the hypothesis that prospective
DM sources could be part of the unIDs catalogue (but they should not be included in the catalogue
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of well-known astrophysical sources), these synthetic features are created in order to reproduce the
distribution of the statistical significance (fTS) and the uncertainty on V of detected unIDs (Vrel). In
fact, these two features are related with the sensitivity of the instrument to a certain energy, i.e. to
the sistematic uncertainty associated with the detected spectra. In Fig. 2 we show the histograms of
each feature for the astrophysical data set (yellow histogram), the DM data set (magenta histogram)
and the unIDs (red histogram).

3. Classification accuracy

We train different classification tools available in the Scikit-Learn [15] with both the two
features (2F), which define the "DM-V" plot (i.e. �peak and V) and four features (4F) that includes
the synthetic features (i.e. f) ( and VA4;). In order to estimate the precision of each classifier with
different features we calculate: the Overall Accuracy (OA), i.e. the number of correctly classified
data set (normalized to the total number of samples in the data set): the True Negative (TN), i.e.
the number of correctly classified astrophysical sources, and True Positive (TP), i.e. the number of
correctly classified DM sources (both normalized to the true values, i.e. the row of each class) (see
[15] for details). Preliminary results for both the Logistic Regression (LR) and NN classifiers (see
Appendix A for technical details), are presented in Tab. 1. Intuitively, we trust more in the correct
classification of already well-know astrophysical sources (TN) than in the correct classification of
prospective DM sources (TP), i.e. our best classifier will be the one that maximizes not only the
OA, but also the TN percentage (with respect to TP). Indeed, we find out that our best classifier so
far is the NN applied to four features. We got $� = 93.1% ± 0.4% and we can correctly classify
94.7% ± 1.1% of astrophysical sources1.

Summary table
LR OA(%) TN (%) TP (%)
2F 84.9 ± 0.6 85.4 ± 1.3 84.4 ± 1.0
4F 86.0 ± 0.5 86.8 ± 1.2 85.6 ± 0.7
NN
2F 86.8 ± 0.3 86.4 ± 2.4 87.2 ± 2.3
4F 93.1 ± 0.4 94.7 ± 1.1 91.4 ± 1.0

Table 1: The OA is normalized on the total number of samples; TN and TP are normalized on the true values,
i.e. on the rows. The classification precision improves by using the synthetic features for the algorithms
training.
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Figure 3: Classification histogram of Fermi-LAT unIDs with a NN trained on standardized data with 2F (left panel)
and 4F (right panel). The color scale represents the probability for being classified as astro, i.e. yellow bar indicates a
100% classification as astrophysical source (Astro) and magenta bar indicates a 100% classification as DM target (0% as
Astro).

4. Preliminary results

We have classified 1125 unIDs with the trained NN. Fig. 3 shows the classification results for
the two-feature (left panel) and four-feature classification (right panel). Thus, we find out that:

• Classification with two features: 1116 unIDs have a probability ≥ 50% to be astrophysical
sources; 3 unIDs have a probability ≥ 60% to be DM target;

• Classification with four features: 1053 unIDs have a probability ≥ 50% to be astrophysical
sources; 33 unIDs have a probability ≥ 99% to be DM target (45 unIDs have a probability
≥ 90% to be DM targets).

Indeed, by introducing the synthetic features (i.e. systematic uncertainty) a number of unIDs
is reconsidered as prospective DM source.

5. Conclusions

In these proceedings we present first preliminary results of our search for DM targets among
Fermi-LAT unIDs with NN. The algorithm is trained on a parameter space of both experimental
and theoretical sample, the latter being enriched by the introduction of synthetic features, which
indirectly allow us to include experimental systematics in the DM set. Further efforts will be focused
to study different strategy in order to include the same uncertainty within different classification
algorithms, e.g. Gaussian Processes with noisy input [7].
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A. Classification algorithm parameters in scikit-learn

In order to ensure the reproducibility of our results, in this appendix we report the parameters
adopted in scikit-learn for this study.

Logistic Regression
We use the sklearn.linear_model.LogisticRegression tool of [15] with the (solver=’lbfg’, ran-

dom_ state=0) and other default options. Note that regularization is applied by default.

Artificial Neural Network
We use the sklearn.neural_ network.MLPClassifier [15]. Our entries are: (solver=’adam’,

alpha=0.0, batch_ size=120, hidden_ layer_ sizes=(41,), learning_ rate_ init=0.015, max_ iter=1000,
random_ state=0, activation=’relu’) and other default options.
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