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The nature of dark matter remains an open question and could be in the form of warm dark matter.
Sterile neutrinos and axion-like particles are well motivated warm dark candidates, and can decay
into photons, which are consequently detectable by X-ray telescopes with keV dark matter mass.
Both particles could explain the observed unidentified 3.5 keV line and, interestingly, XENON1T
observed an excess at a few keV that can originate from axion-like particles. We study the diffuse
emission coming from the Galactic halo, and test the sensitivity of all-sky X-ray survey eROSITA
to identify a sterile neutrino or axion-like particle. By Monte Carlo method, we set bounds on
the mixing angle of the sterile neutrinos and coupling strength of the axion-like particles. With
eROSITA, we will be able to set stringent constraints, and in particular, we will be able to firmly
probe the best-fit of the unidentified 3.5 keV line, where we reach an order of magnitude better
sensitivity. Moreover, eROSITA is able to confirm an axion-like particle origin of the XENON1T
excess for an excess greater than 3 keV.
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1. Introduction

Sterile neutrinos are well motivated dark matter candidates, and can solve some issues in the
standardmodel. They have right-handed chirality, in contrary to the standardmodel neutrinos which
have left-handed chirality. This feature gives a natural explanation for the standard model neutrinos
to have mass, and moreover, it can solve the matter-antimatter asymmetry of the universe. Through
mixing with active neutrinos, sterile neutrinos can decay into a standard model neutrino and a
photon with energy �W = <aB/2, with <aB the sterile neutrino mass, which photon is observable as
a monochromatic line signal by X-ray telescopes. Axion-like particles (ALP) are pseudo-Nambu-
Goldstone bosons that can emerge when a continuous global symmetry is spontaneously broken.
ALPs can couple to standard model particles through coupling, 6, and decay into two photons,
producing likewise a monochromatic line signal in X-rays.

An emission line at ∼ 3.5 keV was detected through a stacked X-ray spectrum analysis of 73
galaxy clusters [1], suggesting experimental evidence for a dark matter decay signal which could
be interpreted as decaying sterile neutrino with mass <aB ∼ 7 keV and mixing angle sin2(2\) ≈
(0.2− 2) × 10−10) [2]. Follow-up studies both confirmed the emission line [3–5], as well as provide
strong constraints on decaying dark matter due to non-detections [6–9].

As another interesting possibility, decaying ALP could explain the observed excess of recoil
events over known backgrounds at the XENON1T experiment, which is most prominent at 2-
3 keV. Since the ALP coupling to standard model particles is already tightly constrained by X-ray
observations [10] in order to explain this excess, a model is required in which the photon coupling
is suppressed. We follow an anomaly-free symmetry model, in which the ALP is coupled to leptons
without any anomalous coupling to photons, and where photons are only induced through threshold
corrections.

In this work, we estimate the sensitivity of eROSITA’s all-sky X-ray survey to observe decaying
sterile neutrino and ALP signals. eROSITA will observe the full sky during four years with an
average exposure of 2.5 ks, and moreover, due to its excellent angular and energy resolution, it is
a valuable probe for dark matter decay with narrow X-ray line emissions. In order to obtain the
largest dark matter induced X-ray flux, we study the diffuse emission coming from the Galactic
halo. By simulating all-sky X-ray count maps, we make a sensitivity projection for eROSITA to a
sterile neutrino and ALP signal under a background-only hypothesis. We find that eROSITA allows
us to probe for a much large parameter space for both sterile neutrino and ALP dark matter.

2. X-ray sky map

2.1 Sterile neutrino signal

X-ray photons from sterile neutrino decay inside theGalactic halo produce a fluxwhich depends
on the sterile neutrino decay rate ΓaB , sterile neutrino mass <aB , energy spectrum 3#decay/3� per
decay, and the D-factor, �. The X-ray photon flux from a region 3Ω is given as follows,

3Φ

3�
=

ΓaB

4c<aB

3#decay

3�
�, (1)

for which we adopt a delta function for the energy spectrum per decay. The D-factor describes the
dark matter density profile of the Milky Way halo, integrated over the line of sight, and we consider
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both the spherically-symmetric Navarro-Frenk-White (NFW) [11] profile and a cored profile [12].
The decay rate depends on the sterile neutrino mass, <aB , and mixing angle \, and is given by the
following decay rate [13, 14],

ΓaB (<aB , \) = 1.38 × 10−29 s−1
[
sin2(2\)

10−7

] ( <aB
1 keV

)5
. (2)

Moreover, we include the extragalactic component for completeness, however, we find that the
extragalactic flux is more than an order of magnitude smaller than the Galactic flux within the small
energy bins that we adopt in this paper.

2.2 Axion-like particle signal

ALP can couple to photons and produce 2 photons with the following decay rate [15]

Γ0→WW ' 5 × 10−29
( <0

7 keV

)3
(

50

5 × 1014 GeV

)−2
s−1, (3)

where <0 is the ALP mass and 50 is the decay constant, where we adopt the following relation with
the photon coupling 60WW ,

50 ≡
U�0WW

2c60WW
, (4)

with �0WW = 8/3 − 1.92 ≈ 0.75 [10].
In order to explain the XENON1T excess by ALP, we adopt an anomaly-free symmetry model,

where photons are induced through threshold corrections. The decay rate is given by [16]

Γ0→WW ' 3.5 × 10−57 GeV
( <0

2 keV

)7 ( 604

5 · 10−14

)2
, (5)

with 604 the coupling between the ALP and electron. The energy spectrum of the ALP decay is
also described by a delta function, which allows for a direct comparison with the sterile neutrino
flux and we use the obtained X-ray bounds on the mixing angle and convert to the coupling strength
60WW or 604.

2.3 Backgrounds

The cosmic X-ray background contributes to the diffuse emission and we consider a power-law
with photon index Γ = 1.42 ± 0.03 and with a normalization at 1 keV of 8.44 ± 0.24 pho-
ton cm−2 s−1 keV−1 sr−1 [17]. Moreover, eROSITA’s detector background consist of high en-
ergy particles and show a flat spectral energy distribution with a normalization of 3.5 × 10−4

counts keV−1 s−1 arcmin−2 [18]. Besides these two isotropic background components, we consider
the X-ray bubbles, which flux is subdominant with respect to eROSITA’s detector background below
∼ 2.3 keV. The X-ray bubbles are observed by eROSITAwith an average count rate in the 0.6−1 keV
energy band of 0.0038 photons s−1 arcmin−2 and 0.0026 photons s−1 arcmin−2 in the northern and
southern bubbles respectively [19], and we consider an uniform template of the Fermi bubbles for
its morphology, downloaded from https://fermi.gsfc.nasa.gov/ssc/data/access/. Finally, in order to
exclude the extended emission from the Galactic plane, we remove all pixels with |1 | < 20◦.
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3. Analysis

We consider in total 13 energy bins around</2 with bin size f� , where f� is related to the full
width at half maximum through FWHM = 2/

√
2 ln 2fE with FWHM = 138 eV for eROSITA [20],

for each sterile neutrino and ALP mass, and range their mass between 2 and 20 keV. We generate
500 mock data sets, =8 , assuming background only through Monte Carlo simulations for each dark
matter mass point, where 8 runs over the energy bins as well as the spatial pixels. The likelihood to
obtain =8 as a function of the decay rate for a specific mass is given by the likelihood functions:

L(Γ) =
∏
8

% [=8 |`8 (Γ)] =
∏
8

`8 (Γ)=84−`8 (Γ)
=8!

, (6)

where `8 (Γ) are the expected counts in each bin under the signal hypothesis with decaying dark
matter and background component. We determine the best-fit model under a maximum likelihood
estimation with the test statistic (TS), and obtain upper limits on the decay rates at 95% confidence
level (CL), which corresponds to a test statistic of TS = 2.71.

4. Results

The sensitivity of eROSITA on the mixing angle as a function of the sterile neutrino mass
is presented in figure 1. The two green bands show the 68% and 95% containment regions from
the Monte Carlo runs, whereas the green solid line represents the median with the NFW profile.
The orange dashed dotted line illustrates the median of the Monte Carlo runs with a cored profile,
and we find little dependence on the density profiles. The lower grey area is excluded by theory
due to dark matter underproduction [21, 22], while the upper grey area is excluded by current
X-ray observations [8, 23–29]. Moreover, the best-fit of the unidentified 3.5 keV line by Ref. [1]
is indicated as a black star, with mass <aB = 7.1 keV and mixing angle sin2(2\) = 7 × 10−11. We
find that with an exposure time of ) = 2.5 ks, eROSITA will be sensitive to the 3.5 keV line and
can even constrain the mixing angles up to nearly two orders of magnitude below the best-fit at
<aB = 7.1 keV.

The sensitivity of eROSITA to the photon coupling is shown in Fig. 2a, where the best-fit for
the 3.5 keV line is indicated by the black star. Even though recent work found no evidence for an
unassociated X-ray line [8], in which the current X-ray limits are shown as the grey shaded area
(see [8, 23–29]), eROSITA will be able to probe a region of the parameter space not yet excluded
by current X-ray limits.

Moreover, we test if eROSITA will be able to probe the parameter space relevant for the
observed XENON1T excess, which has been observed to be most prominent at ALP mass of
<0 = 2–3 keV and electron coupling 604 ∼ 10−13. An anomaly-free ALP model is adopted,
for which the expected sensitivity is presented in Fig. 2b. The excluded region based on X-ray
observations are in grey, and indeed, we probe a parameter space not yet constrained [8, 23–29].
The expected sensitivity of Athena taken from Ref. [30] show comparable sensitivity, as shown as
the red dashed dotted line. The black solid line shows the XENON1T limit at 90% CL [31], and the
dark grey box highlights roughly the best-fit parameter space from Ref. [32]. Future eROSITA data
may not reach the best-fit for the XENON1T excess, however, if the best-fit alters towards higher
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Figure 1: Sensitivity to the mixing angle as a function of the sterile neutrino mass for the cored (dashed
orange) and NFW (green) profiles, showing the 68% and 95% containment regions of the sensitivities and
the median (solid line) from the Monte Carlo runs with an NFW profile.

ALP mass, still inside the XENON1T excess region of interest with energies between 1–7 keV, an
ALP origin could be confirmed. Interestingly, comparison with the expected sensitivity of Athena
taken from Ref. [30] shows similar sensitivity. The yellow shaded area illustrates the preferred
region for the white dwarf cooling anomaly, whereas the yellow dotted line illustrates the preferred
values for the red giant branch in globular clusters [32–34]. These stellar cooling anomalies are
observed excesses in cooling of stellar objects, which could be explained by ALP, and their preferred
regions are close to the XENON1T excess.
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Figure 2: Current and future limits on the ALP-photon coupling (a) and ALP-electron coupling (b). The
blue bands show the 1 and 2f sensitivities from the Monte Carlo runs and the blue solid line the median.
The black solid line in figure (b) represents the XENON1T limit at 90% C.L. [31] and the dark grey box
highlights roughly the best-fit parameter space from Ref. [32].
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5. Conclusion

The all-sky eROSITA survey allows us to search for decaying sterile neutrino and axionlike-
particle (ALP) signal from the Galactic halo. We generate mock data sets with background only, as
well as expected skymaps with counts from decaying sterile neutrinos in the Galactic halo, with four
years of observations. Following a likelihood analysis, we obtain stringent bounds on the mixing
angle of sterile neutrinos (\), as well as on the ALP-photon coupling (60WW) and ALP-electron
coupling (604).

In the case of sterile neutrinos, we will be able to probe a value for the mixing angle up to
nearly two orders of magnitude below the best-fit value of the unidentified 3.5 keV line [1] and one
order of magnitude below the existing upper limits claimed in the literature [8, 23–29].

Moreover, we will be able to probe the ALP couplings to photons and electrons with values
that are not yet excluded by X-ray observations, to the same degree of improvement as in the case
of sterile neutrinos. We investigate both a general model for the ALP-to-photon coupling and an
anomaly-free symmetry model for the ALP-to-electron coupling that has been proposed to explain
the XENON1T excess of electron recoil events [31]. The XENON1T excess could possibly be
explained by an ALP origin for an excess at<0 ∼ 3 keV, which might be well tested with eROSITA.
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