PoS - Proceedings of Science
Volume 395 - 37th International Cosmic Ray Conference (ICRC2021) - DM - Dark Matter
Decaying Dark Matter at IceCube and its Signature in High-Energy Gamma-Ray Experiments
B. Skrzypek*, C. Arguelles and M. Chianese
Full text: pdf
Pre-published on: July 08, 2021
Published on: March 18, 2022
Abstract
Observations of high-energy astrophysical neutrinos in IceCube have opened the door to multi-messenger astronomy, by way of which questions in particle physics could be explored through a combination of IceCube data and optical experiments such as Fermi-LAT. However, the origin of these astrophysical neutrinos is still largely unknown. Among the tensions that still need to be addressed, for example, is the excess of neutrinos observed in the energy range of 40-200 TeV, a contribution that could come from heavy dark matter decay. The dark matter decay hypothesis can be tested through comparisons with gamma-ray data, because a coincident gamma-ray flux is expected to accompany the neutrino flux that IceCube observes. However, gamma-rays become heavily suppressed for sources dominating in particular energy ranges. In the case of the Galactic center, the $\gamma$-sky is partially opaque in the (0.1-10) PeV range. This is due to properties of the traversed medium, which can generally consist of extragalactic background light (EBL), the cosmic microwave background (CMB), and the intergalactic magnetic field. These significantly alter the initial spectrum through intermediate processes such as absorption and Inverse-Compton scattering, giving rise to anisotropy and energy features in the final spectrum that reaches telescopes on Earth. The existence of competing photon background models, moreover, complicates estimates of dark matter constraints. In this presentation, we address these questions by studying the impact that these different models have on indirect measurements of heavy dark matter decay. I present my predictions for galactic, inverse-Compton, and extragalactic gamma-ray spectra undergoing attenuation by different backgrounds.
DOI: https://doi.org/10.22323/1.395.0566
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.