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1. Introduction

Gamma-Ray Bursts (GRBs) are among the most energetic and bright events in the universe.
Discovered in 1967 by the US Vela satellites originally sent to monitor USSR nuclear tests, they
remain one of the big mystery of modern astrophysics. GRBs consist of a prompt emission in the
W-ray band, that can last from fractions of seconds to tens of minutes, followed by an afterglow
spanning the full electromagnetic range from radio to TeV energies. The first important science
results on these transient sources came from the BATSE experiment, which measured the location
of a few thousands GRBs [1], showing a uniform distribution in the sky and therefore implying
that GRBs are extragalactic events. The duration of the prompt emission )90 measured by BATSE
showed that GRBs can be classified in two classes, short and long GRBs, depending on whether
the prompt emission is shorter or longer than 2s. The short GRBs present a relatively hard spectra
and are nowadays known to be originated by neutron star mergers, as showed by the observation
of GRB170817A with a gravitational wave counterpart [2]. Long GRBs, which typically present
softer spectra, are associated with the death of supermassive stars, called hypernovae. Despite
half a century of GRB temporal and spectral measurements, the physical processes at play in these
sources are still poorly known. In order to gather more information about the astrophysics of GRBs,
polarization measurements are essential, since they provide two new probes into the emission
models: the polarization degree (PD) and angle (PA).

2. Polarimetric Measurements of Gamma-Ray Bursts with POLAR

A measurement of the polarization of a W-ray source can be achieved by making use of the
Compton scattering, ruled by the Klein-Nishina cross section. Indeed, the azimuthal scattering an-
gle is linked to the PA of the incoming photon since this latter will preferentially scatter orthogonal
to its initial polarization vector. A segmented array of scintillator bars can therefore be used in order
to measure the incoming W-rays which would scatter in a first bar and be absorbed (or scattered once
again) in a second bar. The deposited energy in each elongated scintillator will then be converted
into optical light, readout by optical sensors at the extremity of the bar. The relative position of the
two bars allows to compute the scattering angle, whose distribution, called modulation curve, leads
to the PA (less populated angle in the distribution) and PD (relative amplitude of the modulation).
This measurement method is depicted in the left part of Figure 1 and has been used by the POLAR
experiment [3].

The POLAR experiment [3], whose design is shown on the right side of Figure 1, has been
launched in September 2016 together with the Tiangong-2 (TG-2) Chinese space lab. It took
scientific data for about 6 months and has detected 55 GRBs in the 50-500 keV energy range. The
instrument consisted of an array of 40×40 long scintillator bars (5.8×5.8×176 mm3) divided into
5×5 modules, all readout byMulti-Anode Photo-Multiplier Tubes (MAPMTs) and housed in carbon
fiber sockets. Plastic scintillators were used for the polarimeter sensitive volume in order for the
Compton scattering to be dominant on the full POLAR energy range (low-Z material).
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Figure 1: Illustration of the Compton scattering used for polarization measurements (left) and design of the
POLAR instrument [3] (right)

A detailed polarization analysis of the five brighter GRBs detected by POLAR has first been
published in [4], followed by a catalog paper with polarization and joint spectral analysis (with
Fermi-GBM and Swift-BAT data) of 14 GRBs [5]. This latter seems to indicate a lowly polarized
emission from most of these GRBs, as discussed in [6]. Time-resolved analysis showed a hint for
continuous evolution of the PA with time that washes out the PD on time-integrated analysis for
several GRBs [7], but the lack of statistics does not allow to exclude a discrete single change of
the PA. Some non GRB related analyses were also performed using the POLAR data and are still
ongoing, especially spectral and polarization analyses of the Crab pulsar as discussed in [8] and
more recently in [9].

A conclusion that can be drawn from the POLAR experiment is that polarimetric measurements
with higher statistics are needed in order to perform proper time and energy resolved analyses and to
be able to disentangle between the various emission models proposed by the theoretical community.
This motivation led to the development of a new generation large scale W-ray polarimeter: the
POLAR-2 instrument.

3. Development of the POLAR-2 Large Scale GRB Polarimeter

A successor of the POLAR experiment, called POLAR-2, has been in development for about
2 years and will be launched to the China Space Station (CSS) in early 2024. Proposed by a Swiss
(UniGe), Polish (NCBJ), Chinese (IHEP), and German (MPE) collaboration, it aims to provide
high quality polarization measurements of GRBs. The overall instrument design as well as the
polarimeter modules development and testing are described hereafter.

3.1 Overall Instrument Design

The POLAR-2 instrument is made of 100 polarimeter modules, increasing by a factor 4
the number of modules compared to POLAR. The polarimeter module design, which can be
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seen in the middle picture of Figure 2, has also been improved in order to increase the overall
performances of the instrument. A module is composed of 64 elongated scintillator bars readout
by Silicon PhotoMultiplier (SiPMs) arrays (the S13361-6075PE from Hamamatsu). The use of
SiPMs increases the Photo-Detection Efficiency (PDE) by about a factor 2, thus increasing the light
yield of the detector and allowing to reduce the lower energy limit of the instrument down to a
few keV. Another advantage compared to MAPMTs is that the detectors can be operated at much
lower voltages (several tens of Volts instead of kV). The main drawback of using SiPMs is the high
dark noise, especially at high temperatures or after exposition to radiation (see [10] and [11]). In
order to reduce this dark current, a cooling system based on thermo-electric cooling devices (Peltier
elements) has been designed. A Peltier element is placed in each polarimeter module in order to
cool down the sensors and the Front-End Electronics (FEE, whose design is shown on the right
picture of Figure 2), and is connected to an external radiator through a copper threading. Thermal
simulations using the Abaqus software from Dassault Systèmes® as well as polarimeter module-
level tests [12] are currently performed in order to optimize the design of this cooling system.
Although a similar kind of SiPMs has already been irradiated (see [10] and [11] for the irradiation
of the 50`m microcells SiPMs), an irradiation campaign is planned on the S13361-6075PE arrays,
as well as on some FEE components, in order to precisely characterize the behavior of such devices
after being exposed to radiations.

Figure 2: CAD model of the POLAR-2 instrument (left), of a single polarimeter module (middle), and of a
Front-End Board (right)

The scintillator material is the same as that used in POLAR (EJ-248M from Eljen Technology),
but the bars have been reshaped to 5.9×5.9×125mm3. The bars are thereforewider in the polarimeter
plane thanks to an optimization of the module mechanical design, reducing the dead space and
therefore increasing the sensitive volume for a fixed bar length. The bar length has also been
reduced from 176mm to 125mm in order to improve the Signal-to-Noise Ratio. Geant4 simulations
of the instrument revealed that the optimal SNR is for 80mm long scintillators (since the background
scales with the sensitive volume), and a compromise between SNR and total sensitive volume was
kept in order to get high enough statistics with good quality signals.
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The POLAR-2 instrument CAD design is shown on the first picture of Figure 2. The 100
polarimeter modules (in black) are disposed on an aluminium grid (in gray). Each FEE is connected
to theBack-EndElectronics (BEE),which is placed in the blue part togetherwith the power supplying
system (Low Voltage Power Supply, LVPS) and the communication system to the CSS. In red is
shown the adapter for the robotic arm of the station used to manipulate the payload, and in yellow is
the interface plate between the payload and the platform of the CSS. The total power consumption
of POLAR-2 is about 300W (2W per polarimeter module and 100W allocated to the BEE, LVPS,
and communication system), while its mass and dimensions are 150kg and 590×648×700mm3,
respectively. Several spectrometer modules based on either CeBr3 or LaBr3 crystals will also be
placed in POLAR-2 as a mean to increase the capability of doing spectral analysis and source
position localization.

3.2 Polarimeter Module Development and Testing

Several prototype modules have been built in order to test its mechanical and optical design.
The FEE mentioned previously and shown in Figure 2 has just been designed, so another readout
system has been used until now in order to acquire data from the prototype modules. The SiPM
arrays were readout using the front-end board of the BabyMIND experiment [13], based on the
same CITIROC-1A ASIC as will be used in the POLAR-2 front-end. A calibration setup, shown
in Figure 3, has been built at CERN using a 365MBq Am241 source and a 3.37MBq Cs137. The
59.5keV photopeak of the former and the 470keV Compton edge of the latter allows to probe a wide
energy range. A lead block with a plastic scatter piece has been designed in order to be able to get
a polarized source of W-rays from the Am241 source. The source can be placed on one side of this
block, the photons are first focused in the direction of a plastic piece, in which they scatter. We
then only select the photons scattering at 0◦ or 90◦ to get an almost 100% polarized source with a
polarization angle of 0◦ or 90◦.

Am-241 source Scatter piece

Figure 3: Module calibration setup with an 241Am source on top (left), and illustration of the method used
to get polarized photons (right)

The light yield for each one of the 64 channels of a module is determined as follows. A single
photo-electron spectrum (so called "finger plot") and the Am241 photopeak are both measured
using the High Gain (HG) output of the ASIC. The finger plot allows to get the ADC to number
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of photo-electrons (p.e.) conversion, while the Am241 photopeak position give the ADC to keV
conversion. In order to be more precise for this latter, a measurement in Low Gain (LG) is also
performed with the Cs137. The Compton edge position as well as the peak separation in the finger
plot lead to the light yield of the channel in p.e./keV. A map of the light yield for an entire module is
shown on the left of Figure 4. Some outliers with lower or higher values can be seen in the map and
are due to a small misalignment between the scintillators and the SiPM arrays. The misalignment
issues will be mitigated using the new FEE design and a special alignment piece. The average
light yield is around 1.6p.e./keV, which is over 5 times better than the 0.3p.e./keV of POLAR. This
implies that we can decrease the lower bound of our energy range from 50keV to a few keV by
putting a threshold at a 3 or 4 p.e.. This improvement of light yield is due to the use of SiPMs which
increased the PDE and to the optimization of the mechanical design which allowed to increase the
contact surface between the sensors and the scintillators.

Figure 4: 2D maps of the light yield in p.e./keV (left) and cross talk (right) for the ×8 scintillator grid
inside of single POLAR-2 detector module. Some outliers can be seen in the light yield maps due to a bad
alignment of the SiPM arrays w.r.t. the scintillators. In the cross talk map the cross talk from one channel to
its 4 direct neighbours is shown. The cross talk to all other channels is found to be negligible.

Another improvement compared to POLAR is the optical cross talk from channel to channel.
It went down from about 15% in POLAR to around 1.5-2.5%, as can be seen in the right map of
Figure 4. Several improvements have been made in order to reduce the cross talk by an order of
magnitude. The upgrade of the sensors from MAPMTs to SiPMs contributed to lower the cross
talk since the MAPMTs have a single thick Borosilicate glass entrance window shared by all the
anodes, whereas the SiPMs only have a thin layer of epoxy resin. The scintillator wrapping method
based on Vikuiti from 3M has also been improved. Optical simulations on Geant4 [14] are carried
out on a single module level to confirm the understanding of the observed optical behavior. The
optical coupling between the SiPMs and the scintillators in the current prototype modules is made
using optical grease, which cannot be used in-orbit. An optical pad based on Room Temperature
Vulcanizing (RTV) silicone is currently developed. A first trial with a 0.35mm thick pad increases
the optical cross talk to 4% (since the optical pad is thicker than the layer of optical grease that
was applied). Manufacturing tests are currently ongoing to decrease the optical pad thickness to
below 0.2 mm, and therefore the cross talk. The cross talk values with and without optical pad are
compatible with the optical simulations.
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The newly designed FEE have been ordered and should be received by the end of the summer.
The firmware of these boards will allow to implement the POLAR-2 trigger scheme optimized for
polarization measurements. We will therefore be able to measure modulation curves and determine
the "100 (the sensitivity to polarization) of a single module. A module made with the POLAR-2
FEE will be used for a vibration and shock test next autumn at the MPE (Garching, Germany) to
qualify the current mechanical design for a launch to space.

4. Expected POLAR-2 Science Performances

The full POLAR-2 instrument design has been implemented with the Geant4 simulation toolkit
[14], which allows to predict its science performances. The effective area for polarization events1
has been simulated as a function of energy for three different configurations: the POLAR detector,
a detector made of 100 POLAR-like modules (POLAR×4), and the POLAR-2 detector with 100
upgraded modules. As can be seen on the left of Figure 5, the gain in effective area for POLAR-2
with respect to POLAR is over an order of magnitude at low energies due to the technological
improvements mentioned in the previous section. At higher energies, the POLAR-2 effective area
is still above a POLAR×4 detector, despite the shorter bars of POLAR-2 reducing its sensitive
volume.

Figure 5: Effective area (left) and modulation factor "100 (right) as a function of energy for a 26.4◦ off-axis
GRB (incoming angle equal to that of GRB170114A observed by POLAR)

The modulation factor M100, which corresponds to the relative amplitude of a 100% polarized
modulation curve, is shown for the POLAR and POLAR-2 configurations on the right side of Figure
5. It can be seen that the sensitivity to polarization has clearly been improved for POLAR-2 with a
peak almost reaching 0.6 at around 100 keV, whereas the POLAR M100 did not exceed the 0.4. As
discussed in [6], thanks to an improved mean minimum detectable polarization (MDP), POLAR-2
will be able to make 50 high quality GRB polarization measurements every year.

1Apolarization event is an event that can be used for polarization studies, with therefore at least 2 triggering scintillator
bars in a fixed time window (usually defined as 100 ns). Single bar events, which cannot be used for polarization analysis,
will also be recorded for spectral measurements, with a higher threshold in order to limit the dead time. The effective
area of POLAR-2 accounting for non-polarization events is discussed in [6].
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