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HESS J1813-178 is one of the brightest and most compact objects detected by the HESS Galactic
Plane Survey and MAGIC observations. A young supernova remnant (SNR) G12.8–0.0 locates
within the TeV extent of HESS J1813-178. And a pulsar wind nebula (PWN) driven by an
energetic X-ray pulsar PSR J1813-1749 is embedded in the SNR, together with a young stellar
cluster, C1 1813-178, detected in this region. The origin of the W-ray emission from HESS J1813-
178 is still not clear. Previous studies show that the GeV emission around HESS J1813-178 is
much more extended than its TeV emission. With the Fermi-LAT data analysis, we did a detailed
morphological and spectral analysis in the region of HESS J1813-178 and found that the GeV W-ray
morphology above 20 GeV is much smaller, which is close to the TeV W-ray contours. Meanwhile,
the GeV spectrum above 20 GeV is hard with an index of ∼ 2.07, which connects smoothly with
that of HESS J1813-178.
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1. Introduction

HESS J1813-178was detected to be nearly point-likewith an extension off = 2.′2 byHESS[1].
The TeV W-ray emission from HESS J1813-178 shows a power-law spectrum with a rather hard
photon index of 2.09±0.08, and MAGIC observations give the similar spectrum with index of
2.1±0.2 in the energy range of 0.4 - 10 TeV [2]. HESS J1813-178 is positionally coincident with
a young shell-type SNR G12.8-0.0, which lies in the vicinity of a bright star forming region W33.
And non-thermal X-ray emission was also detected in this region [3]. Deep X-ray observations
revealed a PWN embedded in the SNR, which is powered by an energetic pulsar PSR J1813-1749
[4–6]. The spin-down luminosity of PSR J1813-1749 is ¤� = 5.6×1037 erg s−1, with a characteristic
age of g2 = 5600 yr [7]. Meanwhile, a young stellar cluster, C1 1813-178, is discovered in the W33
complex [8], which is associated with SNR G12.7-0.0 and G12.8-0.0 at a kinematic distance of 4.8
kpc, together with the TeV W-ray emission region of HESS J1813-178. Recently, Camilo et al. [9]
determined the distance of PSR J1813-1749 to be 3 ≈ 12 kpc with the radio data from Green Bank
Telescope. If HESS J1813-178 is related to PSR J1813-1749, the >200 GeV luminosity of HESS
J1813-178 would be ≈ 3 × 1035erg s−1 with this distance, which makes it to be one of the most
luminous TeV sources in the Galaxy.

It is still not clear for the origin of the W-ray emission fromHESS J1813-178. Fang&Zhang [10]
predicted that the TeV W-ray emission is mainly originated from the PWN, although the contribution
from the SNR shell could be enhanced with a denser medium. With the Fermi-LAT data, Araya
[11] found a much extended GeV W-ray emission (radius ∼ 0.6◦) around HESS J1813-178. The
global spectrum in the energy range of 0.5 - 500 GeV can be fitted by a power-law with an index
of 2.14±0.04, which is not consistent with the IC emission characteristic from leptons in a PWN.
And Araya [11] argued that the extended GeV emission may be related to the star-forming regions
around HESS J1813-178, like W33.

Here we will report the re-analysed results about the W-ray emission around HESS J1813-178
with the Fermi-LAT data, including the spatial and spectral analysis.

2. Fermi-LAT Data Reduction

The following analysis is performed using the latest Pass 8 data with “Source” event class from
2008 August 4 (MET 239557418) to 2021 January 4 (MET 631411205). To avoid a too large point
spread function (PSF) in the lower energy band, only events from 1 GeV to 1 TeV are selected. In
addition, the events whose zenith angle larger than 90◦ are excluded to minimized the contamination
from Earth Limb. The analysis is performed in a 14◦ × 14◦ square region, and the latest standard
LAT analysis software Fermitools is adopted. All sources in the fourth Fermi-LAT source catalog
(4FGL)[12] are included in themodel, together with theGalactic (modeled by gll_iem_v07.fits)
and isotropic (modeled by iso_P8R3_SOURCE_V2_v1.txt) diffuse backgrounds. The binned
likelihood analysis method with gtlike is adopted to fit the data.

3. Analysis and Results

In the 4FGL catalog, an extended source named 4FGL J1813.1-1737e described by an uniform
disk with a radius of 0.6◦, is regarded as the GeV counterpart of HESS J1813-178. However, the size
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of the uniform disk, following the analysis result by Araya [11], is much larger than that of the TeV
W-ray emission of HESS J1813-178. Besides, there is a point source (4FGL J1814.1-1710) located
in the region of 4FGL J1813.1-1737e, which is suggested to be associated with SNR G13.5+0.2
in the 4FGL catalog. Using the model including all 4FGL sources within a radius of 20◦ from the
ROI center, we first investigate the spectrum of 4FGL J1813.1-1737e by adopting the spatial model
recommended in 4FGL. The data are divided into 15 equal logarithmic energy bins from 1 GeV to
1 TeV. And the same likelihood fitting is done for each energy bin. The resulting spectral energy
distribution (SED) of 4FGL J1813.1-1737e is shown as the black dots in Figure 1, and the black
arrows represent the 95% upper limits for energy bins with TS values smaller than 4.0. The SED
shows a spectral upturn in the energy of ∼ 20 TeV. And then we divided the global energy range
into two parts: 1 GeV - 20 GeV and 20 GeV - 1 TeV.
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Figure 1: The SED of HESS J1813-178. The black dots depict the results of Fermi-LAT data in the energy
range of 1 GeV - 1 TeV. The global best-fitting power-law spectra with 1f statistic errors in the range of 1
GeV - 20 GeV and 20 GeV - 1 TeV are shown as the green and cyan butterflies, respectively. The gray dots
are from Araya [11]. The observational data by HESS [1] and MAGIC [2] are marked by the red and green
dots. The black dotted line shows the differential sensitivity of Cherenkov Telescope Array in the south
hemisphere (CTA-South; 50 hr)[14].

For the W-ray emission in 1 GeV - 20 GeV, we refitted the spatial size of 4FGL J1813.1-
1737e using fermipy, a PYTHON package that automates analyses with the Fermi Science Tools [13].
Adopting the spatial template of an uniform disk, the radius is fitted to be 0.561◦ at the centroid of
(RA., Dec. = 273.379◦, -17.677◦), which is similar to the values in 4FGL. The spectrum of 4FGL
J1813.1-1737e in the energy range of 1 GeV - 20 GeV can be well fitted by a power-law model with
an index of 2.49±0.04, which is shown as the green butterfly in Figure 1. And the corresponding
photon flux is calculated to be (1.77±0.06) ×10−8ph cm−2 s−1. For the data analysis in 20 GeV
- 1 TeV, the W-ray centroid is fitted to be (RA., Dec. = 273.421◦, -17.814◦). And the spatial
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size of 4FGL J1813.1-1737e is much smaller, with a radius of 0.232◦. Figure 2 shows the W-ray
emission of 4FGL J1813.1-1737e above 20 GeV. And the W-ray morphology is consistent with the
TeV emission from HESS J1813-178 marked as the cyan contours. With the smaller spatial size,
the W-ray spectrum of 4FGL J1813.1-1737e in the energy range of 20 GeV - 1 TeV is hard, with
an index of 2.07±0.20 for a power-law model. And the corresponding photon flux is (1.56±0.28)
×10−10ph cm−2 s−1. The global spectrum is shown as the cyan butterfly in Figure 1. And it can
be connected smoothly with the TeV spectrum of HESS J1813-178 by HESS [1] and MAGIC [2],
which suggests that the GeV W-ray emission above 20 GeV may has the same origin with HESS
J1813-178.

Figure 2: TS map for a region of 2.0◦ × 2.0◦ above 20 GeV. The positions of 4FGL sources are shown as the
red pluses, and the spatial size of 4FGL J1813.1-1737e is marked by the red circle. The red cross represents
4FGL J1814.1-1710, which is suggested to be associated with SNR G013.5+00.2. The smaller spatial size
with the data above 20 GeV is shown as the white circle. The centroid position of the TeV W-ray emission
from HESS J1813-178 detected by HESS [1] is marked by the magenta diamond, and the cyan contours
represent the TeV W-ray emission from HESS J1813-178 detected by MAGIC [2]. Three SNRs in this region
(G12.8-0.0, G12.7-0.0, G13.5+0.2) are marked by the green pluses.
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