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1. Introduction

The Fermi Large Area Telescope (LAT) is a pair-conversion telescope which surveys the entire
sky, detecting gamma-rays with energies from few tens of MeV up to the TeV range. Observed
sources are distinguished according to their position and spectral characteristics, and have been
collected in a succession of public source catalogs. The fourth Fermi-LAT gamma-ray catalog,
Data Release 2 (4FGL-DR2) [1, 2] is the latest version, and it is based on the first ten years of data
taking with gamma-ray energies ranging from 50 MeV to 1 TeV. An overview of the composition
of the 4FGL-DR2 is reported in Fig.1, where boxes with continous lines summarize the source
class statistics as reported in the catalog. The most numerous and brightest source population is
currently represented by Active Galactic Nuclei (AGN), where jets originating from a supermassive
black hole at the centre of a galaxy emit electromagnetic radiation in a broad range [3]. If the
jet is pointing towards the line of sight, AGN are called blazars. The vast majority (more than
90%) of detected AGN are blazars. Blazars are further classified into BL Lacs (BLL) or Flat
Spectrum Radio Quasars (FSRQ) objects according to optical spectral characteristics, the latter
showing strong, broad emission lines [1, 2]. About one third of detected blazar is still classified
to be of uncertain type (BCU). Aside from AGN, the second main class of sources contained in
present catalogs consists of gamma-ray pulsars (PSR), divided further into young pulsars (YNG)
andmillisecond pulsars (MSP), the last believed to be old pulsars for which the period has decreased
via accretion from a companion object [4]. The AGN and PSR classes of gamma-ray emitters are
characterised by different timing and spectral properties. While AGN typically have a variable
gamma-ray flaring pattern on time scales of months, PSR are instead non-variable on long time
scales. Moreover, the energy spectra of AGN are generically well described by a power law shape,
which is softer than that of a PSR. The energy spectra of PSR have a spectral curvature, where a
break is observed at low and high energies in the Fermi-LAT energy band, requiring the addition of
an exponential cutoff at a few GeV. In the 4FGL-DR2 catalog the gamma-ray sources are identified
as, or associated with, an AGN, a PSR, or some more rare population class. Sources are identified
according to a correlated timing signature at different wavelengths, or only associated requiring
positional coincidence with a counterpart source at other wavelengths. A total of 1794 sources
(about one third) in the 4FGL-DR2 catalog remains unassociated or unidentified (for brevity, we
will label both unassociated and unidentified sources as UNC, unclassified, in what follows).

Given the rapid growth in size and complexity of astronomical datasets, machine learning
algorithms have become increasingly powerful tools, in particular for object classification tasks.
Automated schemes to classify gamma-ray sources based on machine learning techniques are
instrumental to provide a list of particularly interesting candidate target sources for follow-up
observations, as well as for enlarging the number of detected objects for population studies. Past
works have mainly focused on using source features collected in gamma-ray catalogs only. Machine
learning has been applied to investigate the nature of the UNC sources in current and past Fermi-
LAT catalogs, see e.g. [5, 6], or to predict the subclass of AGN of uncertain type, see e.g. [7].
The studies thus far typically use standard machine learning algorithms, such as classification trees,
logistic regression, or random forest classifiers, and are based on the features provided by the Fermi-
LAT catalogs, or simple additional ones, such as hardness ratios, constructed from the energy and
time dependent gamma-ray fluxes, see e.g. [5]. Such an approach requires a careful choice of the
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Figure 1: Left: Composition of Fermi-LAT 4FGL-DR2 catalog. Boxes connected by solid lines decipt the
source classes and the number of sources in each class as reported in the catalog, while dashed lines indicate
the further classification steps explored here using deep learning. See text and [1] for acronym definitions.
Right: Sketch of the dense neural network architecture for the classification of Fermi-LAT sources. Each
box illustrates one layer, stating the type of layer and the output shape in brackets.

features to consider, introducing ambiguities and potential biases e.g. due to existing knowledge of
the source sample. Moreover, the features might not represent all the information encoded in the
spectral data, and the physical interpretation of the importance of some features for the classifier,
for example errors in the flux measurement, may be difficult. In addition, up to now machine
learning gamma-ray source classification techniques do not provide reliable error estimates for the
assignment of sources.

We propose a novel approach to classify gamma-ray sources of uncertain type with deep
learning techniques. The central idea of our classification procedure is to directly use the gamma-
ray energy spectra and time series, rather than a selection of derived features. We employ a fully
connected deep neural network and a recurrent neural network trained directly on the energy and
time dependent fluxes presented in the Fermi-LAT catalog. Bayesian inference methods are also
explored to gain more information about the accuracy and the robustness of the neural networks
predictions.

2. Dataset and Methods
The reference dataset is the 4FGL-DR2 catalog1, in which each source is described by mea-

surements as well as human-crafted features (a total of 74) designed to represent the main source
properties. We here use the gamma-ray flux values in the seven energy bands as reported in the
4FGL-DR2 (entry called Flux_Band, referred to as energy band/spectra/series data in what fol-
lows). As for the time spectra, we select the ten one-year light curves integrated over the full energy
range (Flux_History, referred to as time spectra/series in what follows).

We use deep neural networks, i.e. neural networks composed of several layers, for the clas-
sification of gamma-ray sources. Three deep neural network architectures are explored: a fully
connected network, also called dense neural network (DNN), a recurrent neural network (RNN),
and a Bayesian neural network (BNN). RNNs are designed for analysing sequential data or time-
series data, and can process variable length sequences of inputs. Bayesian neural networks assign

1Publicly available at https://fermi.gsfc.nasa.gov/ssc/data/access/lat/10yr_catalog/
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an explicit prior to the distribution of network parameters, allowing us to assign uncertainties to
the network predictions [8]. The resulting uncertainties depend on the statistical and systematic
uncertainties of the dataset as well as the convergence of the network training. We concentrate on
three binary-type classification tasks. We first perform with the DNN and RNN interclass binary-
type classification, by predicting if UNC are AGN or PSR, and then PSR intraclass binary-type
classification separating YNG vs. MSP (see cyan boxes in Fig.1, left panel and [9]). We then ex-
plore within the DNN and the BNN another binary-type classification tasks, predicting if blazars of
uncertain type (BCU) are BLL or FSRQ (red boxes in Fig.1, left panel and [10, 11]). A visualisation
of the DNN architecture is shown in Fig. 1 (right panel) for illustration. The DNN consist of two
branches, one for the energy spectrum and one for the time series, which are eventually merged into
a fully connected network for classification. In the dense layers we use ReLU(G) = max(0, G) as
activation function, except for the final layer where the softmax activation converts our output into a
probability distribution. Both our neural network architectures are very flexible and additional fea-
tures, apart from the energy and time spectra, can easily be included in the classification algorithms
by appending a third branch to the architecture, which is merged for classification with the other
two branches. We have used a ten-fold cross-validation procedure to optimise the hyperparameters
of our networks (the number of layers in each branch, nodes in these layers, layers in the final
classification part, the number of nodes within these layers), see [9] for more details. Just like the
DNN, also the default RNN architecture consist of two branches, one for the energy and one for the
time series. The main difference to the DNN architecture is that the dense layers are now substituted
with recurrent layers. We find good classification results for three recurrent layers per branch with
eight units each. After concatenating the two branches, 16 features are the input to the classification
part of the network. This part is the same for the RNN as for the DNN. The recurrent layers used for
the serial data are SimpleRNN layers from TensorFlow/Keras2 which use a hyperbolic tangent
activation function. For simplicity, the BNN is implemented considering the energy spectrum data
only. The architecture for the BNN is modified such as each layer is substitute with a Bayesian layer
using DenseFlipout layers from TensorFlow Probability. A similar hyperparameter search is
performed to optimize the performance of the BNN.

As a first step in data preparation, we select sources from the 4FGL-DR2 catalog falling within
the broad classes of AGN and PSR, and of the two main types of blazars, FSRQ and BLL. The
PSR class includes all sources that are identified as or associated with pulsars (CLASS1=PSR,psr).
As for the AGN broad class, we include all sources that are identified as or associated with any
type of AGN, including subclasses of blazars as the Flat Spectrum Radio Quasars (FSRQ), BL
Lacs (BLL), blazars of unknown type (BCU), and other more rare AGN types 3. We will refer to
identified/associated sources as labelled sources. The UNC sources are instead those without any
identification or association, report with a blank space in their class attribute in the 4FGL-DR2
catalog. Since we are also interested in the classification of pulsars as YNG or MSP, we use the
public list of LAT-detected gamma-ray pulsars4 to build a cross-match between this list and the

2https://www.tensorflow.org/,https://keras.io

3i.e. with CLASS1=FSRQ, fsrq, BLL, bll, BCU, bcu, CSS, css, RDG, rdg, NLSY1, nlsy1, agn,

ssrq, sey, see [1, 2] for more details on the AGN subclass definition.
4https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+

Gamma-Ray+Pulsars
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4FGL-DR2 catalog. We shift and re-scale each data input such that the mean over the training set
is zero and the standard deviation is one. The training of our neural networks is characterised by
the choice of the optimiser, the loss function, the initial learning rate and the number of training
updates in terms of batch size and number of epochs. We use the Adam optimiser [12] to minimise
the categorical cross-entropy loss function [9]. We find that efficient training is achieved for the
DNN with a batch size of 64 and an initial learning rate of 0.01. For the RNN a batch size of 32 and
an initial learning rate of 0.001 performs best. We train the networks for 50 and 150 epochs for the
task of AGN vs. PSR and MSP vs. YNG classification. As for the BNN, a batch size of 32, an initial
learning rate of 10−3 and 250 epochs are found to give the best performances in terms of accuracy
and AUC.We train our networks on 70% of the labelled sources and evaluate on the remaining 30%.
The test split is performed such that the relative amount of the two classes is the same in the training
and test sets. The performance measures and uncertainties correspond to the mean values and the
standard deviations of ten training runs. For each run a new network is initialised and the training
and test split is performed randomly. The uncertainties thus combine those from different network
initialisations and from the selection of the training data. Due to the large imbalance of some classes
in our dataset (see Fig.1), the measures used to quantify the performance of the classifier need to
be selected with some care. We have considered an extensive list of complementary measures [9],
but will report here only the global accuracy (ratio of correctly classified sources over the total
number of sources) and the Area under the Receiver Operating Characteristic curve (AUC) for
brevity. Moreover, we have also explored data augmentation techniques to balance and augment
the small dataset we are dealing with. We report here results for the BNN adopting the standardly
used SMOTE algorithm [13], see [9, 11] for extended discussion and results.

3. Results with the dense and recurrent neural networks
For the AGN vs. PSR classification with the benchmark DNN (RNN) we obtain an accuracy

of 97.60 ± 0.20 (97.67 ± 0.24) and AUC=97.99 ± 0.75% (97.40 ± 0.89%). Using only the energy
spectrum data and no additional information about the time dependence (only right branch in
Fig.1), we reach a similar performance, while using only the time series, we observe a decrease
in performance (accuracy of 95.46 ± 0.33%). We conclude that the essential information for the
AGN vs. PSR classification is contained in the energy spectrum integrated over time, and the
time series data does not provide significant additional information. The same is observed for the
RNN architecture. The performance of our classifiers have been tested on numerous architecture
variations, as well as on a cross-match set of sources between an older Fermi-LAT catalog and the
4FGL-DR2 catalogs, see [9]. We have also explored different data augmentation techniques, finding
that no benefit is achieved for the DNN and RNN classifiers, as these effects can be compensated for
by a change in the decision threshold. The classification of MSP vs. YNG pulsars is significantly
more difficult, given the very small data set, see Fig.1. In addition to the energy spectrum and
time series information, we include the latitude of the pulsar in Galactic coordinates (GLAT) here,
since it is a distinguishing feature that can be directly measured, as used also in [5, 6]. Using the
DNN (RNN) on the energy spectrum and the GLAT, we obtain an accuracy for MSP vs. YNG
classification of 87.10 ± 3.86% (85.51 ± 3.37%) and AUC=92.84 ± 3.41% (92.61 ± 2.83%). As
for the classification of blazars of uncertain type into FSRQ and BLL using the DNN, we obtain
an accuracy of 88.77 ± 1.00% and AUC=90.41 ± 0.61% using the energy and time spectra, similar

5
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to previous works [7]. We also explored [10] the performance of the DNN, RNN with different
data augmentation techniques and adding additional features, for example the synchrotron peak
frequency as given in [14], finding slight improvements.

The DNN (RNN) classifier predicts that among the 1679 UNC sources in the 4FGL-DR2
catalog, 1050 (1076) are candidates for AGN (62%/64%), 78 (57) for PSR (4.6%/3.4%), while 551
(546) remain unclassified. These 551 sources are mostly concentrated along the Galactic plane,
where the bright Galactic emission likely prevents a precise measurement of their energy and time
spectra. The percentage of AGN and PSR candidates is in line with similar estimates in previous
publications [5], and in fair agreement with the distribution among labelled sources in the 4FGL-
DR2 catalog (61% AGN and 4.5% PSR). The predicted labels for UNC sources obtained with the
two architectures are found to be consistent. As for the MSP vs. YNG pulsars classification, we
identified a list of 11 promising MSP candidates identified by both our DNN GLAT and RNN
GLAT architectures, detailed in Table 7 in [9]. Finally, using the benchmark DNN architecture, we
identify 853 BLL and 531 FSRQ candidates among the BCU.

The latitude distribution of AGN, YNG and MSP candidates obtained with the DNN classifier,
together with the UNC sources in the 4FGL-DR2 catalog, is presented in Fig. 2, and is found to
be compatible with the expected distribution inferred from labelled sources, with PSR candidates
clustered along theGalactic plane, andAGNcandidates distributedmore isotropically. Although our
DNN and RNN architectures use only the energy and time spectra for training, testing, and in order
to provide a prediction for the UNC sources, the distribution of relevant features can be analysed
afterwards. In Fig. 3 (left panel) we show a variability-curvature contour plot for the labelled sources
in the 4FGL-DR2 catalog, obtained by extracting the variability index (Variability_index) and
the curvature significance for the log parabola spectral fit (LP_SignCurv). 5 Even though the
DNN is not trained to separate sources based on these features (as done instead when using feature
selection [5, 6]), the distribution of candidate sources (AGN: red circles, PSR: blue squares) follows
the expected clustering in the variability-curvature plane (red and blue contours), confirming that the
neural networks extract the relevant features from the energy and time spectra. Similar results are
obtained for the RNN. Comparable conclusions are drawn for the results of the BCU classification:
the distribution of relevant features, such as the power law photon index or the variability index for
the BLL and FSRQ candidates nicely follows the one of labelled sources in the 4FGL-DR2[10].

4. Results with the Bayesian neural network
To further estimate the accuracy and the robustness of the neural network predictions, we

explore Bayesian inference methods. We start with the classification of blazars of uncertain type
into BLL and FSRQ, as this dataset is fairly balanced wrt. for example the AGN vs. PSR one.
Results for the training and testing of the BNN on the 4FGL-DR2 labelled sources are presented.
The distribution of the classification uncertainties obtained for the FSRQ class is shown in Fig.3
(right panel), where we show the standard deviation against the mean FSRQ score for 500 draws
of the BNN weights. The scatter points correspond to individual sources, the histograms to the
mean values within the bins. We tested three different amounts of augmentation using SMOTE:
no augmentation at all (No aug), augmentation of the under represented class to even the number

5In the variability-curvature plane AGN and PSR are known to cluster in different regions, as PSR tend to be
non-variable on long time scales and have spectra exhibiting significant curvature (see e.g. [1]).
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Figure 2: Galactic latitude distribution of AGN (left panel) and PSR (right panel) of 4FGL-DR2 sources.
In each panel, the distribution of AGN/PSR labelled sources in the 4FGL-DR2 is reported together with the
distribution of source candidates as derived by two neural network architectures. The distribution of UNC
sources is also shown in the left panel for comparison.
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Figure 3: Left: Curvature-Variability plot (Sqrt(LP SignCurv) vs. Log(Variability Index)) for labelled AGN
(red contours) and PSR (blue dashed contours) sources in the 4FGL-DR2 catalog. The distribution of candi-
date AGN (red circles) and PSR (blue squared) obtained from the DNN is superimposed. Right: distribution
of the classification uncertainties for the FSRQ class with the BNN and different data augmentation setup.

of sources with the other class (Minority) and fixing the number of sources per class, such that for
both classes augmented sources exist (1500, 10000). Adding augmented data reduces the statistical
uncertainty of the dataset. The result is a significantly reduced uncertainty on the prediction, which
is now limited by systematic uncertainties in the dataset. For just augmenting the minority class
and small amounts of data augmentation, the effect is rather small. The BNN predictions for the
BCU will be detailed in [11].

5. Conclusions
We demonstrated that deep neural networks based on energy and time spectra provide powerful

classifiers to separate AGN from PSR, YNG from MSP, and blazars of uncertain type into FSRQ
and BLL, with a performance that is comparable with previous feature-based analyses presented in
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the literature. We explored Bayesian neural networks, and present preliminary results in the context
of the classification of blazars of uncertain type. Results presented in this contribution are a subset
of the work detailed in [9–11]. We plan to use the predicted classification with uncertainties to
complement population studies of extragalactic and Galactic sources, and to extend our data inputs
to includemultiwavelength data for the energy and time spectra coming from different observatories.
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