PROCEEDINGS

oF SCIENCE

[/~ ICRC 2021

) THE ASTROPARTICLE PHYSICS CONFERENCE
x Berlin | German: y

H ay Conference
r 12-23 July 2021

The Monitoring, Logging, and Alarm system for the
Cherenkov Telescope Array

Alessandro Costa“*, Kevin Munari?, Federico Incardona“, Pietro Bruno“, Stefano
Germani’, Alessandro Grillo“, Igor Oya‘, Eva Sciacca“, Ugo Becciani“and Mario
Raciti, for the CTA Consortium

AINAF, Osservatorio Astrofisico di Catania, Via S Sofia 78, I-95123 Catania, ITALY
bUniversita di Perugia, Dipartimento di Fisica e Geologia, IT

¢CTA Observatory gGmbH

4INAF, Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, IT

E-mail: alessandro.costa@inaf.it

We present the current development of the Monitoring, Logging and Alarm subsystems in the
framework of the Array Control and Data Acquisition System (ACADA) for the Cherenkov Tele-
scope Array (CTA). The Monitoring System (MON) is the subsystem responsible for monitoring
and logging the overall array (at each of the CTA sites) through the acquisition of monitoring
and logging information from the array elements. The MON allows us to perform a systematic
approach to fault detection and diagnosis supporting corrective and predictive maintenance to
minimize the downtime of the system. We present a unified tool for monitoring data items from
the telescopes and other devices deployed at the CTA array sites. Data are immediately available
for the operator interface and quick-look quality checks and stored for later detailed inspection.
The Array Alarm System (AAS) is the subsystem that provides the service that gathers, filters,
exposes, and persists alarms raised by both the ACADA processes and the array elements su-
pervised by the ACADA system. It collects alarms from the telescopes, the array calibration,
the environmental monitoring instruments and the ACADA systems. The AAS sub-system also
creates new alarms based on the analysis and correlation of the system software logs and the status
of the system hardware providing the filter mechanisms for all the alarms. Data from the alarm
system are then sent to the operator via the human-machine interface.

37" International Cosmic Ray Conference (ICRC 2021)
July 12th — 23rd, 2021

Online — Berlin, Germany

*Presenter

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:alessandro.costa@inaf.it
https://pos.sissa.it/

MON & AAS systems for CTA Alessandro Costa

1. Introduction and motivation

The Cherenkov Telescope Array (CTA)[1, 2] will be the largest and most advanced ground-
based facility for detection of very-high-energy electromagnetic radiation, from 20 GeV to 300 TeV.
When entering the atmosphere, this radiation generates secondary charged particle cascades that
can be detected directly or, as in the case of CTA, through the Cherenkov radiation they emit. Since
the area hit by this light is wide, in the order of 10° m?, multiple telescopes are required to intercept
it all, and to reconstruct the properties (energy, direction) of the primary gamma-ray who generated
the cascades. CTA will be composed of tens of telescopes deployed at the Northern and Southern
Hemispheres to achieve full-sky coverage, and an angular resolution of about 1 arcminute at high
energies. Typical phenomena that can be investigated include supernovae, supernova remnants,
pulsars and pulsar wind nebulae, binary stellar systems, interacting stellar winds, various types of
active galaxies, gamma-ray bursts, and gravitational wave transients. By means of its observation,
CTA is expected to shed light on some unresolved astrophysics questions such as the role of rel-
ativistic cosmic particles on star formation and galaxy evolution, the physics in the proximity of
neutron stars and black holes, or the nature of the dark matter. Together with the scientific data
produced by CTA, a big volume of housekeeping and auxiliary data coming from weather stations,
instrumental sensors, logging files, etc., must be collected as well. In order to ingest the whole
amount of data coming from tens of telescopes, a complex software architecture is required that
must be able to face such a cutting-edge technological challenge.

Quality requirements such as reliability, performance, scalability, availability are of fundamental
importance. the Array Control and Data Acquisition System (ACADA) addresses these require-
ments, and supervises the data taking and the telescope control. It also provides the user interface
for the site operators and astronomers.

In this paper we describe the Monitoring System (MON) and the Array Alarm System (AAS)
which are part of ACADA. The MON is responsible for monitoring and logging the overall array
system through the acquisition of monitoring and logging points from the elements of the array, and
for making these data immediately available for the operator interface and for quick-look quality
checks, as well as to store them for later detailed inspection. The AAS is responsible for collect-
ing alarms from telescopes, array calibration and environmental monitoring instruments, and the
ACADA systems itself. The AAS creates also new alarms based on the analysis and correlation of
the system software logs and status of the system hardware and provides filter mechanisms for all
alarms. The data from the alarms are sent to the operator via the human-machine interface (HMI).
We previously presented the MON and AAS systems in [3]. In this paper we describe the whole
MON and AAS system as well the technological choices for the implementation.

The paper is organized as follows. Section 2 reviews the basics of IoT and NoSQL technologies;
Section 3 introduces the architecture of the monitoring, logging and alarm systems; Section 4
introduces the technologies involved in the development; Section 5 presents the conclusions and
the future perspectives.

MON & AAS systems for CTA Alessandro Costa

2. Background and basic concepts

In this section we recall the basics of IoT' and NoSQL technologies and overview the charac-
teristics essential for their integration.

2.1 Background of Big Data and IoT

The term, IoT was used to describe a system where the Internet is connected to the physical
world via ubiquitous sensors. IoT involves by definition a large amount [4] of information sources
(i.e., the things), producing a huge amount of semi-structured data [5] which also have the three
characteristics typical of Big Data: volume [6] (i.e., data size), variety (i.e., data types), and velocity
(i.e., data generation frequency).

Big data is a term utilized to refer to the increase in the volume of data that are difficult to store,
process, and analyze through traditional database technologies. Being the term “big data” relatively
new in IT and business it has been defined several times in literature and with slightly different
meanings. For instance [7] referred to big data as a large volume of scientific data for visualization;
[8] defined big data as the amount of data just beyond technology’s capability to store, manage, and
process efficiently.

Meanwhile, [9] defined big data as characterized by four Vs: volume, variety, velocity and value.
Volume refers to the amount of all types of data generated from different sources and continue to
expand; Variety refers to the different types: since a common big data scenario collects different
information like video, text, pdf, and graphics on social media, as well as technical data from
sensors. Velocity refers to the speed of data transfer. Value is the most important aspect of big data,
it refers to the process of discovering hidden values from large datasets leveraging various types of
data analysis.

2.2 CTA ACADA monitoring and logging data characterization

In the framework of CTA ACADA we expect about 200.000 monitoring points sampled between
1 and 5 Hz for a maximum data rate for writing operations of 26 Mbps for the monitoring system
including the alarms. A maximum rate of about 1 Gbps has been estimated for storing log
information. We are considering here the characteristics of our data compared with the definition
on big data that was given in section 2.1. An high volume and rate of data can here be easily
identified: volume and velocity attributes describe therefore our data-set. The data structure for
monitoring and logging data in ACADA has been specified instead with a well structured data
scheme [10]. No variety attribute can be identified. As of “value”, the logging and monitoring
system aim at providing a solid framework for identifying occurred problems and for implementing
predictive maintenance techniques. The more those data are known and mined the less the whole
system will be affected by interruptions. CTA ACADA monitoring and logging data-set can
definitively claim the title of “big data” being described by three out of four of the attributes that
can identify such a kind of data.

2.3 NoSQL technologies in comparison

NoSQL databases were born in the big data era to deal with high-volume and variety of data
traveling very fast. It is possible to classify NoSQL database according to their storage type. Some

MON & AAS systems for CTA Alessandro Costa

relevant examples are Couchbase [11] or Redis [12], which are essentially in-memory databases,
or column store database such as Cassandra [13] and Hbase [14], or document store databases as
CouchDB [15], MongoDB [16], Elasticsearch [17], and many others. In spite of the classification,
every distributed database must obey to the CAP theorem, which asserts that, in the presence of a
network failure, the system has to choose between consistency and availability. The first being the
ability of the system to show to all the clients the same data at the same time, while the second
is the ability to correctly respond to every client request. So that, different technologies follow
different approaches to the CAP theorem providing the user with different solutions. For instance,
in presence of network partition, Cassandra and CouchDB guarantee availability, while MongoDB,
Redis and Hbase guarantee consistency [18]. Comparing some qualitative attributes of the most
popular NoSQL databases, it results that Cassandra ensures at same time great write-performance,
scalability, availability and consistency [18], in contrast to MongoDB that instead is by far the most
popular [19]. As already mentionend, the main difference between these two systems is the storage
type. Besides, Cassandra exploits a peer-to-peer architecture with no hierarchy among nodes.
On the contrary, MongoDB uses a master/slave approach and sharding to spread load. Strong
differences exist in terms of performance between the twos. In fact, with respect to MongoDB,
Cassandra is optimized to work with larger volumes of data [20]. Furthermore, while MongoDB
is faster than Cassandra for what concern readings, things revert for writing operations. For this
reason, Cassandra appears to be the best solution for large critical sensor applications [21]. Being
the data produced by the the monitoring and logging system characterized by an high volume and
rate in writing operations as was demonstrated in 2.2, Cassandra was then the most suitable and
solid database solution for our purposes.

3. Logging, Monitoring and Alarm Systems Architecture

The Monitoring and Logging subsystems (hereafter MON) provide services for monitoring
data items from the Telescopes and other devices deployed at the CTA array sites and making
those data immediately available for the operator interface and for quick-look quality checks, as
well as to store them for later detailed inspection. This architecture takes advantage of continuous
technological evolution [22] to respond to the challenges posed by the operation of the array, in
particular to satisfy the reliability. MON includes the production of the software for the Monitoring
System Logging System and Logs Analyser.

MON is composed of the following main building blocks: (Fig 1)

Monitoring System: Provides the services that gather monitoring data (i.e. time-series data from
instruments sensors and statuses at typically 1 Hz rates) from the Telescopes and other instruments,
such as environment monitoring devices, and stores them in a local database. The monitoring
system works continuously to record any monitoring data made availale by Array Elements, which
also includes the data points required for engineering purposes.

Monitoring and Logging Supervisor: Itreceives startup and shut-down commands by the ACADA
RM (Resource Manager) and passes them to the MON systems. It provides its status information
to the RM.

Environmental Conditions Inspector: A component that accumulates the data from the central
calibration devices to produce indicators for the status of the environment. Most of the environmental

MON & AAS systems for CTA Alessandro Costa

monitoring data is received directly from the monitoring system. The component processes the
monitoring data, puts associated data elements together, and determines and stores the status of the
environment.

Monitoring Value Inspector: A component that provides the capability to re-sample the monitoring
information coming in the form of irregular and unevenly spaced time series data to a consistent
and regular frequency. The component processes the monitoring events and raises alarms if data is
above the threshold for a predefined period of time.

The Logging System is composed of the following main building blocks: (Fig 1)
Logging System: Gets logging information from relevant software components and stores it. This
logging comes in three flavours: software logs provided by elements using the control framework,
software logs of the observation scripts, software logs produced by low-level firmware, that require
reformatting to adapt to the rest of the logs
Logs Analyzer: A tool to analyse logging data information to trigger further alarms, as well as
warnings for the technical crew.

The AAS is composed of the following main building blocks: (Fig. 1)
Alarm Collector: Provides the services to collect any alarm raised by the Array Elements or
ACADA components.
Alarm Filter: Provides means to filter, merge and reduce alarms according to defined rules.
Alarm Rules Database: A database defining the alarm reduction rules for the Alarm Filter.
Alarm Storage: Local repository to store alarms and reactions to alarm history.
AAS Supervisor: Manager component for the AAS, connected with to the supervision tree provided
by the RM.

4. Technologies

According to what has been decided for both CTA sites installations, our MON and AAS
systems are integrated with the ALMA Common Software (ACS) [23], an open-source framework
on which the software operating the ALMA observatory is based on. ACS allows the use of the
following programming languages: C++, Java, and Python. Although there is more C++ and
Python tradition in CTA, we opted for Java because ACS is mostly implemented in Java and a lot
of ACS documentation is available for Java developers. Furthermore, the robustness of Java is
considered more important than the extra performance gain with C++. Java is, in fact, robust, ease
of use, platform-independent, and secure. ACS makes use of Apache Maven [24] and we also take
advantage of it to build and manage in an automated way our Java-based systems. As previously
stated, during the activities of the array site, MON is designed to acquire monitoring and logging
points of ACADA. More specifically, MON can access and monitor ACS and OPC-UA data sources.
To this aim, MON makes use of Eclipse Milo SDK [25], which provides a pure-Java, open-source
implementation of the OPC-UA 1.03 client and server specifications. To exchange the acquired data
among the heterogeneous ACADA subsystems, we opted for Apache Avro [10], a data serializa-
tion framework that uses JSON forhttps://www.overleaf.com/project/60cb6c4ca023bc0f99748172
defining schemas the information exchanged must be compliant with. Finally, to support such a

MON & AAS systems for CTA

Alessandro Costa

Aggregated Enwnronment Satus

Musitering a ngsing Sfatis
g

i [Ageregateclomponent] Monitoring and Logging $rterms Manitoring & Logging]] '.\

Ernieanemental Conditions lspeclor

a0

strumarit Moaitoring

Erwircnment $2atus

Superviseritatus

Initiglis=

and r 1
! Shiitdirar Monitoring and
i Command Logging Supervism

|
|
|
|
|
|
i
|
|
| Ausilisry Instrument Monitoring, Camers

| Mianitaring, Clags Monitcring 15T Manttaring
Infrastruciues Monitoe irg, Telescops Monitoring

Monitoring System

]
Array | Monitoring Collector Menitoring Storage
Flomorts oy 3
Momitorirg =

Uzia Quality Menitaring Chock System Inspectaor

Inspecen
Dtz Quality
Maritaring

Monitoring Values

[’
This comes in addition from any
.| other ACADA SW companent

Logging System

Saftware Loas

s

Cre -t

=30 Logging Collector Lagging Starage sagregated Logs
|
P R —

I
i

Logging Corfigaratian

====n

| ——

|
I

'

'

i

: Aggregsted Logs Logs Analbyzer
e Y

i Menitoring Canflguraticn

Initialize ard Shutdown
Commang

Lo
et
——
Alarm
T
i
Alzrm

parting

]

Mo Data far
Fipalires

Lk
Canfiguration

ibd [AggregatedCompanent] Array Alarm System [Alarm System]]

Initizlize and Shutdown Command

Array Alarm
System
Supervisor

stz (F

Alarm C
Receiver

Alarm Storage

i

| systemAlarm !
|

|

Status Alarm Status [timeframe]
i
& Y
e L)
Alarm Alarm
Status Repository

Figure 1: Software architecture for the Monitoring, Logging Systems (Up); Alarm System (Down)

volume of data, we make use of Apache Kafka [26], a distributed event streaming platform designed
to handle data streams from multiple sources and deliver them to multiple consumers. Besides, to
forward and centralize logs generated by ACADA, we use a set of distributed lightweight shippers
based on Elastic Filebeat [27]. Those log events are ingested, filtered and manipulated by a central-

ized log aggregator based on Elastic Logstash [28], which acts as a data processing pipeline that, in

the end, sends them to Apache Kafka. As previously stated, we opted for Apache Cassandra as our

database management system (DBMS), which is specifically designed to handle large amounts of

MON & AAS systems for CTA Alessandro Costa

data. Finally, we make use of the Docker platform [29] to easily distribute, replicate and scale our
deployment environment, packaging the technologies described above in containers.

5. Conclusion and Future Directions

We presented the architecture of a system that monitors and logs the data needed to improve
the operational activities of a large scale telescope array. The system was designed and built
considering the current software tools and concepts coming from Big Data and Internet of Things.
The software stack is based on open source software, thus reducing the need for unnecessary extra
software development. Future work is planned to integrate Machine Learning algorithms to perform
anomaly detection, failure prediction and to manage complex events [30].

References

[1] Science with the Cherenkov Telescope Array (2019), 10.1142/10986.
[2] Introducing the CTA concept, Astroparticle Physics 43 (2013) 3.

[3] A. Costa, G. Tosti, J. Schwarz, P. Bruno, A. Bulgarelli, A. Calanducci et al., Architectural
design and prototype for the logging, monitoring, and alarm system for the ASTRI
mini-array, in Software and Cyberinfrastructure for Astronomy VI, J.C. Guzman and
J. Ibsen, eds., vol. 11452, International Society for Optics and Photonics, SPIE, 2020, DOI.

[4] S. Aguzzi, D. Bradshaw, M. Canning, M. Cansfield, P. Carter, G. Cattaneo et al., Definition
of a research and innovation policy leveraging cloud computing and iot combination, Final
Report, European Commission, SMART 37 (2013) 2013.

[5] P. Buneman, Semistructured data, in Proceedings of the sixteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp. 117-121,
1997.

[6] P. Zikopoulos and C. Eaton, Understanding big data: Analytics for enterprise class hadoop
and streaming data, McGraw-Hill Osborne Media (2011).

[7] M. Cox and D. Ellsworth, Managing big data for scientific visualization, in ACM siggraph,
vol. 97, pp. 21-38, 1997.

[8] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh et al., Big data: The next
frontier for innovation, competition, and productivity, McKinsey Global Institute (2011).

[9] P.C. Zikopoulos, D. Deroos and K. Parasuraman, Harness the power of big data: The IBM
big data platform, McGraw-Hill, (2013).

[10] “Apache avro.” https://avro.apache.org/.
[11] “Couchbase.” https://www.couchbase.com.

[12] “Redis.” https://redis.io.

https://doi.org/10.1142/10986
https://doi.org/10.1016/j.astropartphys.2013.01.007
https://doi.org/10.1117/12.2560697
https://avro.apache.org/
https://www.couchbase.com
https://redis.io

MON & AAS systems for CTA Alessandro Costa

[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

(21]

[22]

(23]
[24]
[25]
[26]
[27]
(28]
[29]

[30]

“Apache cassandra.” https://cassandra.apache.org.
“Apache hbase.” https://hbase.apache.org.

“Apache couchdb.” https://couchdb.apache.org.
“Mongodb.” https://www.mongodb. com.
“Elasticsearch.” https://www.elastic.co.

J.R. Lourenco, B. Cabral, P. Carreiro, M. Vieira and J. Bernardino, Choosing the right nosql
database for the job: a quality attribute evaluation, Journal of Big Data 2 (2015) .

“Db-engines ranking.” https://db-engines.com/en/ranking.

V. Abramova and J. Bernardino, Nosql databases: Mongodb vs cassandra, C3S2E ’13:
Proceedings of the International C* Conference on Computer Science and Software
Engineering (2013) .

J.S.V.D. Veen, B.V.D. Waaij and R.J. Meijer, Sensor data storage performance: Sql or nosql,
physical or virtual, pp. 431-438, 2012, DOL.

A. Costa et al., Big Data Architectures for Logging and Monitoring Large Scale Telescope
Arrays, in Proc. ICALEPCS’19, no. 17 in International Conference on Accelerator and Large
Experimental Physics Control Systems, pp. 268-271, JACoW Publishing, Geneva,
Switzerland, 08, 2020, DOI.

“Alma common software.” https://www.eso.org/projects/alma/develop/acs/.
“Apache maven.” https://maven.apache.org/.

“Eclipse milo.” https://projects.eclipse.org/projects/iot.milo.

“Apache kafka.” https://kafka.apache.org/.

“Elastic filebeat.” https://www.elastic.co/beats/filebeat.

“Elastic logstash.” https://www.elastic.co/logstash.

“Docker.” https://www.docker.com/.

B.P. Rao, P. Saluia, N. Sharma, A. Mittal and S.V. Sharma, Cloud computing for internet of
things & sensing based applications, in 2012 Sixth International Conference on Sensing
Technology (ICST), pp. 374-380, IEEE, 2012.

https://cassandra.apache.org
https://hbase.apache.org
https://couchdb.apache.org
https://www.mongodb.com
https://www.elastic.co
https://doi.org/10.1186/s40537-015-0025-0
https://db-engines.com/en/ranking
https://doi.org/10.1109/CLOUD.2012.18
https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA032
https://www.eso.org/projects/alma/develop/acs/
https://maven.apache.org/
https://projects.eclipse.org/projects/iot.milo
https://kafka.apache.org/
https://www.elastic.co/beats/filebeat
https://www.elastic.co/logstash
https://www.docker.com/

	Introduction and motivation
	Background and basic concepts
	Background of Big Data and IoT
	CTA ACADA monitoring and logging data characterization
	NoSQL technologies in comparison

	Logging, Monitoring and Alarm Systems Architecture
	Technologies
	Conclusion and Future Directions

