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The Cherenkov Telescope Array (CTA) is the future ground-based gamma-ray observatory and
will be composed of two arrays of imaging atmospheric Cherenkov telescopes (IACTs) located
in the Northern and Southern hemispheres respectively. The first CTA prototype telescope built
on-site, the Large-Sized Telescope (LST-1), is under commissioning in La Palma and has already
taken data on numerous known sources. IACTs detect the faint flash of Cherenkov light indirectly
produced after a very energetic gamma-ray photon has interacted with the atmosphere and
generated an atmospheric shower. Reconstruction of the characteristics of the primary photons
is usually done using a parameterization up to the third order of the light distribution of the
images. In order to go beyond this classical method, new approaches are being developed
using state-of-the-art methods based on convolutional neural networks (CNN) to reconstruct
the properties of each event (incoming direction, energy and particle type) directly from the
telescope images. While promising, these methods are notoriously difficult to apply to real data
due to differences (such as different levels of night sky background) between Monte Carlo (MC)
data used to train the network and real data. The GammaLearn project, based on these CNN
approaches, has already shown an increase in sensitivity on MC simulations for LST-1 as well
as a lower energy threshold. This work applies the GammaLearn network to real data acquired
by LST-1 and compares the results to the classical approach that uses random forests trained
on extracted image parameters. The improvements on the background rejection, event direction,
and energy reconstruction are discussed in this contribution.
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I. Introduction

The Cherenkov Telescope Array (CTA) is the future of ground-based gamma-ray astronomy.
With two arrays built on two sites, La Palma (Canary Islands) and Paranal (Chile), it will
be composed of tens of imaging atmospheric Cherenkov telescopes (IACT) of different sizes
that will increase the sensitivity by a factor of 5 to 10 compared to the current generation of
instruments in the range from 20 GeV to 300 TeV. The Large-Sized Telescope 1 (LST-1) is the
first CTA prototype telescope built on-site (at the Observatorio del Roque de los Muchachos,
La Palma) and is currently under commissioning. Thanks to its size (23 m mirror diameter), it
is specially designed to focus on the low energy range of CTA (from 20 GeV to a few hundreds
of GeV). Data from several known gamma-ray sources have already been acquired.

Relativistic particles (either gamma-rays or cosmic rays) entering the atmosphere produce at-
mospheric showers, whose sub-products produce Cherenkov light collected by IACTs. A complex
analysis, also called event reconstruction, is necessary to determine the particle type (separating
gamma rays from cosmic rays which represent the background), its energy and incoming direction
from the images produced by IACTs. We present this analysis in further details in section II
and then explain how it can benefit from convolutional neural networks (CNNs), comparing the
standard approach and our network W-PhysNet DA. We present performances on simulations in
section III and on LST-1 data in section IV.

II. Event reconstruction

Fig. 1: Top: LST-1 observation principle. Bot-
tom: Extracted signal charges and times.

The Cherenkov light generated by atmospheric
showers is collected on the ground by the LST-
1 optical system that focuses it to an ultra-fast
and sensitive camera sampling the signal into a
temporal series of 40 snapshots of 1855 pixels of
1 ns each (also called waveform). This process
is depicted in Figure 1. The waveform is then
calibrated and integrated to obtain two images,
one containing the pixel charges and one the
mean arrival time of the Cherenkov photon in
each pixel. These two images are then analysed to
extract image parameters used to reconstruct the
particles physical parameters of interest (type, en-
ergy, incoming direction) using machine learning
algorithms such as random forests [1].

Thanks to accurate Monte Carlo simulations
[2, 3], machine learning algorithms are trained
on these images in order to reconstruct the corre-
sponding physical parameters. The algorithms can
then be applied to simulated test datasets in order
to compute the instrument response function, and
so the performance of the reconstruction, or to data from observations.
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The steps of image parameters extraction, training, and inference on observations is the one
we propose to enhance with deep learning. Indeed, since the AlexNet revolution [4] CNNs
have shown in many fields [5] their capacity to replace and overtake solutions with engineered
parameters extraction. They have been applied to IACT event reconstruction in the past on CTA
simulated data [6–8] and on H.E.S.S. [9, 10] data, but with limited success on observations.
Here we will compare the standard approach using engineered parameters and random forests
with the CNN we developed specifically for the tasks at hand, W-PhysNet DA. The first step
of calibration plus charge integration is common for both approaches and presented in further
details in [11]. It is performed using the lstchain v0.7.3 library [12] based on ctapipe v10.5
[13, 14].

II-A LST-1 classical approach: Hillas and ensemble models

A classical approach, called Hillas by the name of its creator [15], is based on characteristic
parameters extracted from these images. This is the standard analysis method in use for LST-
1 data analysis. The images first go through a cleaning step called tailcut-cleaning requiring
pixels to be above a given picture threshold and a neighbor above a second threshold. The
same mask is then applied on the temporal map. Image parameters are then extracted from
these cleaned images. The parameters (defined in lstchain v0.7.3) used in this work are: image
intensity, ellipsoid width, length, position and orientation in the camera, second order moments,
signal time development gradient and charges containment.

Three different random forests (RF) are then trained, one for each task: particle classification,
energy reconstruction and direction reconstruction. The performances of these RFs are presented
in section III. This approach, later noted Hillas+RF, will serve as the reference for the rest of
this work. The complete set of parameters is given in lstchain v0.7.3 standard configuration.

II-B W-PhysNet - a convolutional neural network to analyse LST-1 data

The CNN we developed, W-PhysNet DA, is presented in depth in Ref. [16, 17]. It is a
multi-task network, so contrary to the classical approach and to previous works using CNNs, a
single algorithm is trained to perform the full event reconstruction (particle classification, energy
reconstruction and direction reconstruction). It is composed of a first convolution block common
to all tasks and based on ResNet-56 [18] enhanced with indexed convolutions [19] and Dual
Attention mechanism [20].

III. Performance comparison on simulated data

The Monte Carlo simulations, produced using CORSIKA [2] and simtel_array [3] are fine-
tuned to the LST-1 at a pointing of 20 ° zenith in the South direction. The training dataset is
composed of isotropic gamma rays and protons while the test dataset is composed of point-source
gammas at an offset of 0.4° to the camera center, and isotropic protons and electrons.

Quality cuts are applied to select events: the integrated charge after image cleaning must be
greater than 50 photoelectrons, the fraction of that integrated charge in the outermost ring of
pixels in the camera must be below 20% and the image must pass a tailcut cleaning with a picture
threshold of 6 photoelectrons and a neighbor threshold of 3 photoelectrons. Note however that
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the cleaning itself is applied only in the case of the Hillas+RF procedure, while the entire image
information is kept in the case of W-PhysNet DA.

III-A Instrument response functions

Applying the trained algorithms to the test dataset, one can compute the instrument response
functions (Figure 2, as defined in Ref. [21]) for the two approaches. The gammaness and angular
cuts are determined for best sensitivity in each energy bin using the pyirf v0.4 package [22]. The
highest performances of W-PhysNet DA on all tasks are clearly demonstrated at all energies and
in particular at the lowest ones (below 300 GeV). The greater classification power of W-PhysNet
DA is shown by the higher effective area and by the higher area under the roc curve.

Fig. 2: Comparison of instrument response functions and performances on simulated data between
the reference (Hillas+RF) and our network W-PhysNet DA. Top-left panels: angular resolution, energy
resolution and energy bias (lower is better). Bottom-left: Sensitivity ratio (higher is better). Top-right:
effective area (higher is better). Bottom-right: ROC curve (higher auc score is better).

IV. Application to LST-1 data

IV-A Methodology

The fairest way to compare the performances of two reconstruction chains is to match their
background levels. To do so, we first apply the quality selection cuts common to both chains.
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(a) Hillas+RF (b) W-PhysNet DA

Fig. 3: Smoothed (kernel=0.12) count map of gamma-like events around Markarian 501.

Then, we fix the gammaness (likelihood of an event to be a gamma) cut of the standard Hillas+RF
analysis at a given level and the gammaness cut of W-PhysNet DA is then determined in order to
get the same background level as the one of the reference in each energy bin in the background
region (determined with the multiple OFF technique [23]). It is worth noticing that several values
have been tested for the reference gammaness cut with no significant change in the results - only
one analysis has been kept for simplicity.

IV-B Detection of Markarian 501

Markarian 501 is a well-known blazar at TeV energy range. The observation dataset is
composed of 4 runs taken on the night of the 20 March 2021 for a total of 1h. Observed
zenith angles range from 20° to 12.5°. All observations are conducted in wobble mode with an
offset of 0.4°.

In this case, the analysis (training and inference) has been performed with cleaning levels of
(8,4). The high-level analysis is performed using gammapy v0.18.2 [24], the standard science
tool for CTA. Background estimation is done with the reflected multiple off technique [23]. The
excess and the background are calculated per reconstructed energy bin.

First a counts map of gamma-like events is generated for both chains (Fig. 3). For W-PhysNet
DA and Hillas+RF we can notice a hot spot at the source position, later confirmed by proper
background estimation and significance calculation. Figure 4 shows the events counts as a
function of the separation angle to the source for both chains in OFF and ON regions. On
these figures one can observe a bias in the direction reconstruction in the case of W-PhysNet
DA. The reason of this bias on observations needs further investigation but preliminary studies
show an impact of the discrepancy in pointing direction between simulations and observations.
An angular cut of \ = 0.2 deg is applied on data to select the source region in agreement with
the average angular resolution and standard cuts applied in LST-1 data analysis [21].

Figure 5 presents a comparative excess count as a function of the reconstructed energy. We
can notice the greater excess of gamma-like events detected by W-PhysNet DA compared to the
standard Hillas+RF approach, especially at low energies (around 100 GeV). This is in harmony
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with the results obtained on Monte Carlo simulations presented in figure 2, even though the
performance gain is not as large.

Fig. 4: Event count as a function of the squared
angular separation to Mrk 501. The vertical dashed
line represent the \2 cut applied on data for the
analysis.

Fig. 5: Excess and relative excess between W-
PhysNet DA and Hillas+RF as a function of the
events reconstructed energy. Bins are missing in the
ratio in case of no positive excess for Hillas+RF.

Table I provides the integrated counts and significance for both analysis chains. We can notice
that the background levels are similar, as imposed by the procedure. We show here that both
analysis chains are able to detect Mrk501, with a slight advantage for W-PhysNet DA, showing
an integrated excess greater by 30 % (±23%) and a higher significance than the reference.

Reconstruction Excess Significance Background counts
Hillas+RF 148.7 W 7.6 f 238.3

W-PhysNet DA 192.7 W 9.8 f 226.3

TABLE I: Excess and significance results for Markarian 501.

IV-C Detection of the Crab Nebula

Here we analyze two observation runs, #2012 (OFF run) and #2013 (ON run) taken in
February 2020 at zenith angles of 21.4° and 28.9° respectively. Both runs undergo the same
data reduction as described in section III.

Fig. 6: Distribution of the charges (in photoelec-
trons) from NSB in the simulations, compared
to the one from LST-1 observation data.

The night sky background (NSB) in the Crab
Nebula sky region is much higher than in the
case of Mrk 501 and more importantly, much
higher than the standard NSB used in simula-
tions. As this can negatively impact the analysis,
especially in the case of CNNs which are very
sensitive to the noise distribution in the images,
we add a poissonian noise to the simulated data.
Thanks to Raikov’s theorem [25], we determine
the parameter of the Poisson distribution as the
difference between the simulated average noise
pixel charge and the observed one. We can see that
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Excess Significance Background
Hillas+RF 379 12.0f 308
Hillas+RF 376 11.9f 305

+ Poisson noise
W-PhysNet DA 395 12.5 f 302
W-PhysNet DA 476 14.3 f 317
+ Poisson noise

TABLE II: Excess and significance results for Crab Nebula.

the additional noise leads to a better agreement
between simulated and observed NSB distributions in figure 6. All models are then retrained
with these modified simulations.

Here the standard Hillas+RF (without added noise) serves as a reference for the rest of the
analysis and is used for background matching to all others analysis as described in section IV-A.

Figure 7 presents the normalized distributions of the angular separation and figure 8 the
excess for all analysis chains. One can see here again the higher excess detected by W-PhysNet
DA compared to Hillas+RF, especially at low energies.

Fig. 7: Gamma-ray event distribution in both ob-
servations as a function of the squared angular
separation between the reconstructed and the true
directions.

Fig. 8: Excess of detected gamma rays per energy
bin. The lower part of the plot represents the ratio
of gamma-ray excess per energy bin detected by
the models over the one detected by the baseline
Hillas+RF method.

Table II displays the final results on Crab Nebula with the excess count, background count
and significance. There are several things worth noticing here. First, one can see the higher
significance of W-PhysNet DA in its first version (12.5 f) compared to Hillas+RF (12.0 f).
Then one can see the important improvement brought by the addition of poissonian noise to the
simulated dataset, with a final significance of 14.3 f. Finally, one can note the higher robustness
of the Hillas+RF analysis, obtaining very similar results (significance of 11.9 f) after the addition
of noise. This is most probably due to the tailcut cleaning applied in this chain which is removing
the NSB, thus trading loss of information with robustness.

7



P
o
S
(
I
C
R
C
2
0
2
1
)
7
0
3

CTA LST-1 real data analysis using CNNs T. Vuillaume et al. for the CTA LST project

V. Conclusion

After showing better performances on simulated data, the present study confirms the better
sensitivity, especially at low energies, of W-PhysNet DA compared to the classical Hillas+RF
reconstruction on observations, with two sources detected with higher significance. The greater
gain at low energy can easily be explained by the fact that images are on average noisier at these
energies and that convolutional neural networks are more powerful at extracting signal in this
case. We also show the importance of closely matching the simulated data with the observed
ones taking the NSB as use-case, especially in the case of CNNs which are more sensitive to
differences between training and test data. The difference in pointing direction between training
data and observation is also expected to play a role and its impact on performances will be
studied in a later work. This work shows that CNNs are a valid approach for LST-1 event
reconstruction, even though it is still in commissioning phase. As shown, their performances can
still be improved by a closer match between simulations and data, which will be further refined
by our increased understanding of the telescope.
We gratefully acknowledge support from the agencies and organizations listed here: www.cta-
observatory.org/consortium_acknowledgment and here: https://gammalearn.pages.in2p3.fr/page
s/acknowledgements/.
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