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1. Introduction

Analysismethods used in the current generation of ImagingAtmosphericCherenkovTelescopes
(IACTs) are typically optimised to have the best performance in the core energy range where most of
Very-High-Energy (VHE) gamma-ray sources are bright, i.e. around 1 TeV.However, there aremany
important topics – such as the search for Galactic PeVatrons, the study of gamma-ray production
scenarios for sources (hadronic vs. leptonic), extragalactic background light (EBL) absorption
studies – which require good sensitivity at energies above 10 TeV. At these high energies, the
instrument sensitivity is greatly limited by low gamma-ray statistics due to steeply falling source
spectra. Thus, it is very important to have an analysis optimised in this challenging energy range.

In the typical event analysis chain, there are several steps, e.g. image preparation and event
selection, event reconstruction, background rejection, whose improvement and optimisation can
lead to an increase in gamma-ray statistics and as a result to better sensitivity at high energies. One
of the selection parameters in the H.E.S.S. analysis chain makes the event selection based on their
distance to the camera centre (offset angle) since reconstruction accuracy degrades as event offset
increases. At low energies, this cut discards a small fraction of detected showers. However, the
effect increases with energy, and above 10 TeV, nearly 50% of the detected events are beyond the
typical offset threshold. This work investigates the feasibility to use events beyond the described
limitation as a way to increase gamma-ray statistics in the high energy range.

Thus, Section 2 of this proceeding introduces the main idea of the high-energy optimised
analysis, which benefits from employing large-offset events. The section also describes challenges
of such an approach and the possible way to solve them. Section 3 presents the performance
obtained for the developed analysis method.

H.E.S.S. is an array of five Cherenkov Telescopes, consisting of four smaller size telescopes
(CT 1 – 4) located in the corners of a square and one large-size telescope (CT 5) situated in the
middle of the array. Since CT 5 is focused more on low-energy part of the VHE spectrum and has
a smaller angular size of the camera, it is not included in the studies presented in this contribution.

2. Large-offset-event analysis

As mentioned above, event offset is an angular distance between the event direction and camera
centre in the camera plane. It is schematically illustrated on the left side of Figure 1. The offset
angle is one of the event selection parameters and its standard cut value is normally set to 2.5◦,
which is the angular size of the CT 1 – 4 cameras. There is another somewhat related parameter –
pointing distance – an angular distance between the array pointing position and gamma-ray source
that is shown on the right side of Figure 1. It is used for the run selection and the cut value is
approximately the same as the cut on the event offset. This way, a simultaneous increase of the
maximum allowed event offset and pointing distance can increase the number of observation runs
involved in the analysis of the particular VHE source, and thus, increase the source exposure, which
may result in larger gamma-ray statistics at high energies. Such an approach is easily realised
in the Galactic Plane, where gamma-ray sources are located at relatively small angular distances
from each other, and thus, the IACT observation placed rather frequently. The plot on the right in
Figure 1 shows an example of such a case using Vela X and Vela Junior gamma-ray sources, which
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Figure 1: Left: the camera plane and event offset angle definition. The red cross marks the shower direction
reconstructed using the standard method, employing image axes intersection. Right: the definition of the
run pointing distance and an example of the sky region where an ability to analyse events at large offset
angles would be beneficial. The example displays two VHE sources, Vela X and Vela Junior. White crosses
indicate telescope pointing positions during the H.E.S.S. observations. Red dashed rings show two cases of
the maximum pointing distance from the Vela X position, i.e. runs within the ring are considered for the
analysis. The data are taken from [1].

are located within about 3◦ of each other. The smaller ring shows the typical maximum pointing
distance of 2.5◦ around the source. About 94 h of observations fall into this ring. However, for
high-energy studies, the pointing distance cut could be increased up to about 4.5◦, which allows
for 124 h of data to be analysed (shown with a larger ring). This way, more runs taken on the
neighbouring source (Vela Junior) can contribute to the analysis of the given source (Vela X). In
the addition, increase of the maximum allowed event offset results in the increase of the effective
Field of View (FoV) from 5◦ to up to 9◦.

Employment of large-offset events in the analysis has advantages but also comes with a number
of challenges. The standard event direction reconstruction [2] is based on a pairwise intersection
of the major image axes and works better for the image pairs with the separation angles between
images close to 90◦, which happens fairly often in the case of small-offset events. However, the
behaviour of shower and image parameters changes as the event offset increases. Being inclined
in relation to the telescope pointing axes, large-offset showers are detectable from greater distances
than the small-offset ones. This results in smaller separation angles between shower images. In
this case, a small error in direction of the image major axis can lead to the large inaccuracy of
the shower direction estimation and degradation of the event analysis accuracy. In addition to this
major issue, the efficiency of the gamma-hadron separation drops at large offset angles resulting
in an increased background rate being another challenge for the large-offset-event analysis. Both
these issues are addressed in the presented work by implementing a more sophisticated direction
reconstruction technique within the H.E.S.S. analysis framework as well as modifications to the
standard gamma-hadron separation method, which by themselves are the crucial components for
the increase of high-energy gamma-ray statistics and improvement of sensitivity.
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2.1 Improved direction reconstruction

Originally, the DISP method (short for displacement) was invented for the shower direction
reconstruction in the case of a single telescope operation such as Whipple [3]. Nowadays it is
widely used for stereoscopic systems such as MAGIC II [5]. In the H.E.S.S. analysis framework,
the DISP method is implemented for the CT 5 mono analysis [4]. In this work, it is implemented
for the CT 1 – 4 telescopes to improve the quality of the shower direction reconstruction.

The displacement is the angular distance between the image centre of gravity (CoG) and the
shower direction position. It can be estimated based on the shape of the shower image in the camera.
If the vertical shower landed near the telescope, it has a fairly round footprint, while images of distant
vertical showers are more elongated. The estimation of the displacement parameter here is similar
to the CT 5 mono reconstruction and done using the machine learning algorithm, specifically Multi-
Layer Perceptron (MLP), one of the neural networks implementationswithin the TMVApackage [6].
Seven parameters are used as input variables for the training. Six of them are image parameters:
width and length of the image, roundness (width over length), intensity, skewness and kurtosis. The
last variable is the seeding parameter. Each event undergoes direction pre-reconstruction using the
standard image axes intersection method. The resulting preliminary direction position is used to
calculate intermediate displacement value, which serve as a seed for the DISP method.

The DISP method is trained in bands of zenith, azimuth and offset angles as well as optical
efficiency. The details of the bins used for the training are summarised in Table 1. The neural
networks are trained using diffuse gamma rays simulated within the 5◦ viewcone. For the training
in offset-angle bands, this viewcone is split into nine rings with 0.5◦ width (except for the first and
last ring, which covers 0◦ to 0.75◦ and 4.5◦ to 5◦ offset angles, respectively). The simulated energy
range depends on the zenith angle and spans from around 100GeV up to 150 TeV. To have decent
statistics at high energies, gamma rays are simulated with Γ = −1 spectral index instead of Γ = −2.

Zenith 0, 20, 30, 40, 45, 50, 55, 60◦

Azimuth 180◦

Offset 0.5 – 4.5◦ with 0.5◦ step
Optical efficiency 50 – 100% with 5% step

Table 1: The binning used for the neural network training in the DISP method.

During the event analysis, the displacement is estimated for each shower image individually.
However, the location of the shower direction along the major image axis with respect to the image
CoG (in front or behind) is unknown. Thus, each image has two estimated direction positions, whose
distance to the image CoG is equal to the displacement estimate. Since CT 1 – 4 telescopes typically
observe in stereoscopic mode, this ambiguity is solved by considering all possible combinations of
the individual image directions (averaged direction estimates) and picking the one with the smallest
uncertainty. Improvement in the angular resolution using the DISP direction reconstruction over
the standard method reaches 5 – 10% for the lowest offset-angle band. The effect rises as offset and
zenith angle increases. At 2◦ event offset, the improvement is around 20% and 30% for 20◦ and
40◦ zenith angle, respectively. Naturally, it happens due to a larger fraction of distant showers with
nearly parallel major image axes at large zenith-offset angles than at lower ones.
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2.2 Improved gamma-hadron separation

The background rejection in this work is based on the standard method implemented within
the H.E.S.S. analysis framework [7]. It uses a machine learning algorithm, specifically Boosted
DecisionTrees (BDT) implemented in theTMVApackage. In addition to the standard list of six input
variables that consists of four image-shape-based parameters, shower maximum and uncertainty of
energy reconstruction, the method presented here uses one more input parameter, which showed
background discrimination power. This parameter is the shower core distance, i.e. the distance
between the shower axis and array centre. The comparison of the shower core distance distribution
for gamma rays and background events is shown in Figure 2. As can be seen in the figure, the
core distance distributions are similar at low energies. However, at energies above ∼5 TeV, hadrons
have a broader distribution of core distances and a significant fraction of events are reconstructed
to further distances in comparison to gamma rays.

Similarly to the standard method, the BDTs in this work are trained in energy, zenith and offset
angle bands. The list of zenith angle bands stays unchanged and is the same as for the neural
network training in the DISP method (see Table 1). The energy and offset angle bands are modified.
Instead of one offset-angle band at 0.5◦, there are nine bands, which cover the range from 0.5◦ to
4.5◦ with the step of 0.5◦. Instead of one band at high energies from 5 to 100 TeV, five new energy
bands are introduced: 5 – 10, 10 – 20, 20 – 50, 50 – 80, 80 – 150 TeV.

Analogically to the standard method, the background sample for the training is extracted
from the real observations of the sky regions, which do not contain bright gamma-ray sources,
while point-like gamma-rays for the signal sample are simulated. The energy range covered in the
simulation is the same as for the gamma rays used for the training in the DISP method. In order to
have large gamma-ray statistics at high energies, the simulated spectra again have Γ = −1 spectral
index instead of the standard Γ = −2. However, due to such a choice of the simulated spectra, there
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Figure 2: A comparison of the shower core distance parameter distribution behaviour for gamma-ray and
background samples. The curves display the mean (left) and RMS (right) values of the core distance
distributions as a function of energy. Solid lines denote point-like gamma rays simulated at 20◦ zenith, while
dashed ones indicate real observations of the empty fields, i.e. cosmic-ray background, in the zenith angle
range between 15◦ and 25◦.
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is not enough statistics at low energies and two low energy bins and combined into one 0.1 – 0.5 TeV
bin. This will affect the classification performance in the low energy band, but it is considered
acceptable since the current work is focused on high energies.

Eventually, the modifications introduced to the standard gamma-hadron separation method
improved the background rejection efficiency above 10 TeV at the lowest offset angles, improved
effective area at intermediate offset angles (although, at the cost of slightly increased background
rate) and allowed us to use large offset angles in the analysis as is shown in the next section.

3. Performance

This contribution focuses on general method development, while the cut-optimisation investi-
gation is beyond the scope of this work. Thereby, the analysis proposed in this study is based on
the standard cut configuration and uses the same values for the event selection and gamma-hadron
separation cuts.

The left side of Figure 3 shows the angular resolution at different event offsets as a function of
the zenith angle. Points represent the angular resolution estimated for energies above 10 TeV. For
zenith angles above 50◦, the energy threshold is higher than 10 TeV for the offset angle of 4◦. In
this case, the angular resolution is computed above the energy threshold, which also can be seen on
the right side of Figure 3 as a function of offset and zenith angle. Within the physical size of the
camera, the energy threshold stays nearly constant for a given zenith angle. But at offset angles that
are larger than the camera size, the energy threshold experiences a dramatic increase.

Figure 4 shows the effective area in the left and differential sensitivity of the developed analysis
method in the right panel and compares the results to the standard analysis for the events at small
offset angles. At 0.5◦ offset angle, the effective area curves for the two analyses are very similar,
which is expected since all selection cut values are the same. However, at larger offset angles,
the standard effective area experiences a depression around 5 – 10 TeV. It might indeed happen due
to the fact that the standard gamma-hadron separation is trained only for the 0.5◦ offset band and
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Figure 3: The angular resolution above 10 TeV and energy threshold of the high-energy optimised analysis
as a function of zenith and offset angle.
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Figure 4: The effective area and differential sensitivity for the 100 h of observations as a function of energy
for 20◦ zenith angle and different offset angles. Solid and dashed lines denote the curves for the high-energy
and the standard analysis, respectively. The x-axis is binned a way to contain 5 energy bins per decade.

performs worse at larger offset angles. The sensitivity curves in the figure show an improvement
at the level of 10 – 20% in comparison to the standard analysis. At the lowest offset angles, the
sensitivity improvement is reached as a result of the more efficient background rejection, while at
the intermediate offset angles, it is achieved thanks to the improved effective area.

This contribution also presents the performance studies carried out by applying the developed
high-energy analysis to well known gamma-ray sources. The results are displayed in Figure 4, which
shows the evolution of the significance and gamma-ray excess as a function of the maximum allowed
event offset (2◦, 3◦ and 4◦) in the high-energy optimised analysis for the four selected sources. In
addition, the results are compared to the standard analysis with maximum event offset set to 2◦.
On average, high-energy analysis with 3◦ and 4◦ maximum event offset has the highest values of
excess counts, which is important for the morphology and spectral studies. However, these analysis
configurations also typically have a higher background rate after gamma-hadron separation, which
results in high-energy analysis with 2◦ and 3◦ maximum event offset having higher significance as
well as signal-to-noise values. When compared to the standard analysis, 2◦-high-energy analysis
performs better.

4. Conclusion

In this contribution, an high-energy-optimised analysis method for IACTs is presented. It
allows for the reconstruction of events at large-offset angles, which are typically not accessible
in the standard analysis. The inclusion of the large-offset events in the analysis can increase the
effective FoV up to 9◦, and more importantly, it is a promising way to increase the source exposure,
and as a result, valuable gamma-ray statistics above 10 TeV.

The challenges of degraded reconstruction accuracy and increased background rate encoun-
tered during this study are addressed by implementing the DISP method for better event direction
reconstruction as well as the introduction of several improvements to the standard gamma-hadron
separation method. Altogether, presented analysis modifications allows not only for the usage of
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Figure 5: Significance (left) and excess counts (right) for different analysis configurations: high-energy
analysis with three different maximum event offset and comparison to the standard analysis.

large-offset events but also resulted in a 10 – 20% improvement in sensitivity at standard offset
angles, i.e. below 2.5◦.
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