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excellent agreement the published HAWCCrab spectrum using Gammapy. Having a common data
format and analysis tools facilitates joint analysis between different experiments and effective data
sharing. This will be especially important for next-generation instruments, such as the proposed
Southern Wide-field Gamma-ray Observatory (SWGO) and the planned Cherenkov Telescope
Array (CTA).

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany

∗Presenter

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:laura.olivera-nieto@mpi-hd.mpg.de
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
1
)
7
2
7

Standardized Formats for HAWC Laura Olivera-Nieto

1. Introduction

Historically, a variety of instrument-specific and largely proprietary tools and data formats have
been used in γ-ray astronomy, which hinders effective data-sharing and reproducibility. However,
in recent years there has been a shift towards making data more accessible and easier to share
in the context of joint analysis. A big driver of this trend has been the upcoming Cherenkov
Telescope Array (CTA) [1], the data of which will become public after a short proprietary period.
Motivated by this development, there has been an advent of openly developed analysis tools, such
as Gammapy [2], which are able to replace the existing instrument-specific packages by offering a
single, common tool. Gammapy is a community developed Python package for γ-ray astronomy
selected to be part of the CTA science tools. It has been successfully used and validated for analysis
of Imaging Atmospheric Cherenkov Telescope (IACT) data [3] and joint analysis with data from
the Fermi Large Area Telescope [4].

In parallel to these efforts, a common data format across different observatories, the gamma-
astro-data-format (GDAF)1 [5] has been developed. The scope of this standard is to cover all
high-level data products from telescopes, starting at the level of event lists and instrument response
functions (IRFs). This format relies on file storage by the Flexible Image Transport System (FITS)
format [6], which is widely used by the whole astronomical community. It builds on existing
standards such as OGIP2 and expands them to tailor the specific needs of the γ-ray community.
The focus of these efforts has largely been IACT data, ignoring another type of γ-ray experiment:
wide-field ground-based observatories.

The High-Altitude Water Cherenkov (HAWC) is a γ-ray detector that consists of 300 water
Cherenkov detectors, each outfitted with four photomultiplier tubes (PMTs). Its wide field of view
covers two-thirds of the sky uninterruptedly, allowing for constant monitoring and deep observations
of the γ-ray sky. It has been in operation since November 2014.

It is worth noting that the HAWC Accelerated Likelihood (HAL) [7] framework and the Multi-
Mission Maximum Likelihood framework (3ML) [8], the packages primarily used by the HAWC
observatory, are also open-source, but spouse a different philosophy to that of the packages described
above. Instead of replacing the existing frameworks from different observatories by a single,
common tool, packages like 3ML provide a common framework in which the instrument-specific
tools (such asHAL) interface. This approach has the advantage to include not only γ-ray instruments
but also multiwavelength and multimessenger observations. However, it has the disadvantage to
rely on instrument-specific analysis software, which, in the case of γ-ray observations, performs
very similar tasks between different instruments.

2. HAWC data and IRFs in the GADF

Events recorded by the HAWC observatory are binned by size, that is, on the fraction of PMTs
from the array that were triggered by the event. A total of 9 event size bins are defined, as detailed in
Table 1. The event size only weakly correlates with energy [9]. In order to estimate the energy on an
event-by-event basis, more advanced algorithms have been developed. The ground parameter (GP)

1https://gamma-astro-data-formats.readthedocs.io/en/latest/

2https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/ofwg_intro.html
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Bin number Low edge High edge
1 0.067 0.105
2 0.105 0.162
3 0.162 0.247
4 0.247 0.356
5 0.356 0.485
6 0.485 0.618
7 0.618 0.740
8 0.740 0.840
9 0.840 1.00

Table 1: Event size ("nhit") bins. Bins are defined
from the fraction of PMTs triggered by each event.

Bin Low edge (TeV) High edge (TeV)
a 0.316 0.562
b 0.562 1.00
c 1.00 1.78
d 1.78 3.16
e 3.16 5.62
f 5.62 10.0
g 10.0 17.8
h 17.8 31.6
i 31.6 56.2
j 56.2 100
k 100 177
l 177 316

Table 2: The energy bins. Note that the first two
bins are not used in the analysis as the estimate is
highly biased [10].

algorithm is based on the charge density deposited at ground by the shower. The neural network
(NN) algorithm estimates energies with an artificial neural network that takes as input several
quantities computed during the event reconstruction. A detailed overview of both algorithms can
be found in [10]. Energy bins are typically defined beforehand in HAWC analysis and referred to
with letter names, as described in Table 2. The combination of event sizes and energy bins leads to
a 2-dimensional bin scheme, with 108 analysis bins resulting from the combination of each event
size bin 1 to 9 with the 12 energy bins. However, only a subset of these bins are populated with
enough event statistics, for example, low energy events are very unlikely to have large event sizes.

2.1 Events and good time intervals

For each of these analysis bins, gamma-hadron separation cuts are optimized [10] and applied
to the reconstructed data. Additional direction corrections are applied and the event coordinates are
converted to the J2000 epoch. The resulting event lists are stored in FITS [6] files with headers and
columns compliant with the GADF. Additionally, other columns are stored that contain information
pertinent to the characteristics of wide-field arrays, such as core location in the array, direction in
local coordinates and event size.

Due to the large sky coverage and high duty cycle, it is common amongwide-field observatories
to make sky-maps as their primary data product directly from reconstructed events. However,
producing event lists as an intermediate step has the advantage of adding more flexibility. It allows
to easily select a subset of the whole dataset for a given analysis, which simplifies the study of
time-dependent signals. It also facilitates extensive systematic checks.

Good Time Intervals (GTIs) are defined as the time intervals during which the detector is
on and taking data continuously. These intervals are then used to build the exposure information.
Detector downtime is caused by a variety of factors, ranging from hardware issues to meteorological
conditions. These interruptions are not uniformly distributed over time, with certain meteorological
events being more likely during particular times of the year. This leads to fluctuations in the
exposure as a function of hour angle, or, equivalently, right ascension (R.A.). For HAWC data
collected between June 2015 and June 2019, we compute the number of transits - i.e., sidereal days

3
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Figure 1: Number of transits during which data was recorded as a function of R.A.

- for which the detector was taking data as a function of the R.A. of zenith, shown by the green line
in Figure 1. It can be useful, for example for background modeling, to remove this R.A. dependency
on the exposure, to "flatten" it. To do this, one can remove GTIs from the time selection until the
resulting exposure is no longer a function of R.A. An example of this process can be seen in Figure 1
This exposure "flattening" leads to a loss of data of around 1-2%, maintaining the overall detector
efficiency above 90%.

2.2 Intrument response functions

The IRFs describe the combined detection abilities and precision of an instrument data-
taking and reconstruction procedure. They are computed by simulating a point source emitting
γ-rays following a given energy spectrum, usually ∝E−2. These events are processed with the
detector simulation and reconstruction procedure, see [9] for more details. The reconstructed
events are binned as described in Section 2 and gamma-hadron separation is applied. This process
yields information on the number of events successfully identified as γ-rays as well as the accuracy
and precision of the energy and direction assigned to them. In the GADF, this information is split
into three components respectively, the effective area, the energy dispersion matrix, and the point-
spread function (PSF). Note that this framework neglects the correlation between the different IRF
components. This is currently mostly sufficient for IACT analysis and also present in the standard
HAWC framework. However, this will be re-addressed for CTA and thus, likely for the GADF as
well in future.

2.2.1 Effective area

The effective area of a detector is the combination of its detection efficiency with the observable
area. Typically in the computation ofHAWC IRFs the simulated spectrum is convolvedwith a source
transit over the observatory, leading to a comparison of events detected to events thrown per square
meter and transit. Analysis bins described in Section 2 include a cut on zenith angle at 45° [10].
We can compute the number of hours that a source at each declination spends at zenith angles lower
than 45°, that is, the duration of a transit as a function of declination, to recover the effective area

4
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in units of m2. Figure 2 shows these curves for all the available declinations resulting from analysis
bins defined using each of the energy estimation schemes described in Section 2. The effective
is greatest for declinations close to 19°, the terrestrial longitude of the HAWC location. Sources
at this declination pass through the local zenith as they transit the sky over the observatory. The
effective area per transit, that is, the effective exposure for one transit, is also a useful quantity,
especially when considering the long-term study of sources. Given its declination dependence, we
fill a Gammapy Map3 with the one-transit effective exposure. Then, for a given data range selection,
the number of transits like the one shown in Figure 1 is combined with this map to produce the
effective exposure map used for the analysis.
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Figure 2: Effective area after background rejection for bins defined using each of the energy estimators
described in Section 2.

2.3 Point-Spread Function

The point-spread function is a measure of the precision achieved in the event direction recon-
struction. It is computed as the spatial probability distribution of events produced by a point source.
It is assumed to be radially symmetric, and so can be stored as a function of offset from the source
location. Gammapy provides several options to store and use this information in the irf4 class.
Like the other IRFs, the HAWC PSF depends on declination. For this reason, we fill a PSFMap
with the PSF radial profile information at each sky position. From this, we can compute the 68%
containment radius, which we compare to the published values in [10] to validate the procedure.
This comparison can be seen in Figure 3, showing good agreement.

2.4 Energy dispersion matrix

The energy dispersion is a measure of the accuracy and precision achieved in the event energy
estimation. It is computed as the probability of an event with a given simulated energy (Etrue) to
be reconstructed with a different energy (Ereco). We use the EDispMap5 class in Gammapy, which
is a dedicated 4-dimensional sky-map. At each sky position, it contains the probability matrix that

3https://docs.gammapy.org/0.18.2/maps/index.html

4https://docs.gammapy.org/0.18.2/irf/psf.html#irf-psf

5https://docs.gammapy.org/0.18.2/api/gammapy.irf.EDispMap.html#gammapy.irf.EDispMap
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Figure 3: Comparison of the PSF containment at the Crab location for analysis bins using the energy
estimators described in Section 2.

quantifies the energy dispersion. An example of such matrices at the Crab location is shown in
Figure 4 for each of the event size bins defined in Table 1 and Ereco energy bins defined in Table 2.
As can be seen, the energy resolution improves with increasing event size bin.
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Section 2
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3. Validation analysis with Gammapy: the Crab Nebula

The Crab Nebula is one of the brightest sources in the γ-ray sky. For this reason, it is typically
used for calibration and as a reference analysis. The HAWCCollaboration published a measurement
of the Crab spectrum extending up to 100 TeV using the energy estimators described in [10]. Using
the same data range and background estimation method as in that work, and the IRFs as described
above, we can reproduce that result using Gammapy. We fit a combined 3-dimensional (spatial and
spectral) model. For the spatial model we use a point-source assumption, and a log-parabola for
the spectral shape. The result of this fit is shown in Figure 5, for both energy estimators. For both
figures, the top panel compares the best-fit spectrum obtained with Gammapy with the published
one, showing excellent agreement. In the bottom panel, the flux points computed with Gammapy
are compared to the model in [10].
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Figure 5: Best-fit Crab spectrum obtained with Gammapy compared with [10] for both energy estimators
described in the text. The residual shows the comparison of the flux points with the model in [10].

4. Conclusion

The data from ground-based, wide-field observatories, and in this case, from the HAWC
observatory, can also be made compatible with the GDAF and thus can be analyzed using the
related open-source tools with minor adjustments. We find excellent agreement with the results
published in [10] using an analysis tool that is built with a different philosophy and structure. This
is a powerful check of both the scientific result and both tools involved, as well as the production of
HAWC data and IRFs in the GDAF-compliant format.

Having a common data format and analysis tools facilitates joint analysis between different
experiments and effective data sharing. This synergy between experiments is particularly relevant
given the complimentary nature of pointing and wide-field instruments. This will be specially
important for future observatories like SWGO [11].

The lifetime of observatories is finite, and one of the concerns at the end of the operation is
to ensure that the archival data is available and easy to use for future studies and reproducibility of
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results. Having data in a format that is common to other observatories and which can be analyzed
with a general use tool is a great advantage in this regard.

Gammapy has recently been selected as the official CTA Science tool. This ensures that it will
be maintained and used by the overall γ-ray community, a much larger developer and user base than
any of the other collaboration-specific tools individually.
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