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TAIGAexperiment uses hybrid detection system for cosmic and gamma rays that currently includes
three imaging atmospheric Cherenkov telescopes (IACTs). Previously we used convolutional
neural networks to identify gamma ray events and estimate the energy of the gamma rays based
on an image from a single telescope. Subsequently we adapted these techniques to use data from
multiple telescopes, increasing the quality of selection and the accuracy of estimates. All the
results have been obtained with the simulated data of TAIGA Monte Carlo software.
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1. Introduction

Imaging atmospheric Cherenkov telescopes (IACTs) can detect Cherenkov radiation produced
by cascades of particles originating from a collision of a high-energy particlewith upper atmosphere,
known as extensive air showers. Individual IACTs and IACT arrays are used in numerous gamma-
ray observatories such as MAGIC, H.E.S.S., VERITAS. They are also used along with other types
of detectors in the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray
Astronomy) experiment where a second Cherenkov telescope was commissioned and a third one
installed in 2020 [1].

One of the main problems faced by scientists using IACT images is separating the images
of events caused by gamma rays from the more common images of events caused by other types
of primary particles such as protons. A conventional method based on image parameters (so-
called Hillas parameters) was originally proposed in [2]. Following the breakthroughs in applying
machine learning to image recognition machine learning methods also became commonly used in
gamma astronomy. In particular, the very successful convolutional neural networks (CNNs) were
applied to the analysis of IACT images in multiple experiments including VERITAS [3], CTA [4],
and H.E.S.S. [5]. In our previous work we used CNNs to identify the primary particle types and
estimate the energy of the gamma rays using images from a single TAIGA telescope [6, 7].

In this paper we extend the use of convolutional neural networks for the analysis of TAIGA
IACT images to stereoscopic mode. We compare the performance of the neural networks trained
on images from one and two telescopes in identifying images corresponding to gamma events and
estimating the energy of the gamma rays.

2. Image classification

The neural networks were trained and evaluated using images generated by a Monte Carlo
simulation software CORSIKA [8]. The data set for the networks identifying the primary particle
type consisted of stereoscopic images of 3400 gamma events and 9306 proton events with the energy
from 1 to 45 TeV, obtained by two telescopes. The distance between the telescopes was 300–350 m.
Figures 1 and 2 show the examples of a gamma and a proton event images, respectively.

We used the following neural network architecture:

Conv2D 5 × 5, W
AvgPool 2 × 2

Conv2D 5 × 5, W
AvgPool 2 × 2

Conv2D 3 × 3, W
AvgPool 2 × 2

Flatten 3 × 3 ×W → 9W
Fully connected layer, 3W
Fully connected layer, W

Output layer, 2

with W = 10, 15, 25, 50, 100, 150, 250 and either one or two images as input. PyTorch library was
used to implement the networks.
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Figure 1: Stereoscopic TAIGA IACT image of a gamma event, E = 11.77 TeV.

Figure 2: Stereoscopic TAIGA IACT image of a proton event, E = 10.83 TeV.

All neural networks were trained on 80% of the data set and evaluated using the remaining 20%,
which was repeated 10 times with different training subsets selected at random. The networks were
trained for 500 epochs with dropout (p = 0.5) applied before each fully connected layer, including
the output layer. The learning rate for gradient descent was initially set at 0.1 and decreased by a
factor of 10 if the average loss did not reach a new minimum for 20 consecutive epochs.

The networks trained on stereoscopic images showed significantly improved performance.
One possible measure of performance is the hadron suppression rate (the true positive rate to false
positive rate ratio) with a condition that the fraction of correctly identified gamma events (true
positive rate) is kept above 1/2. For the neural networks trained on monoscopic images the average
hadron suppression rate was 74–98, and for the networks trained on stereoscopic images it was
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Figure 3: Average ROC AUC for the CNNs trained on monoscopic (triangles) and stereoscopic (double
triangles) images.

340–454. For the similar networks adding a second input image increased the hadron suppression
rate by a factor of 4.0–5.4.

We also compared the average area under a receiver operating characteristic curve (ROC AUC)
for these networks. For the networks trained on monoscopic images the average AUC was between
0.9889 and 0.9916, and for the networks trained on stereoscopic images it was between 0.9975 and
0.9983 (fig. 3).

3. Estimation of gamma ray energy

The data set for the networks estimating the gamma ray energy was generated using CORSIKA
and consisted of stereoscopic images of 18359 gamma events with the energy from 1 to 50 TeV.
The images were obtained by two telescopes at a distance of 324 m from each other.

We used the following neural network architecture:
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Conv2D 5 × 5, bW/4c
AvgPool 2 × 2

Conv2D 5 × 5, bW/2c
AvgPool 2 × 2

Conv2D 3 × 3, bW/2c
AvgPool 2 × 2

Flatten 3 × 3 × bW/2c → 9bW/2c
Fully connected layer, W
Fully connected layer, W
Fully connected layer, W

Output layer, 1

with W = 12, 25, 50, 100, 200 and either one or two images as input.
All neural networks were trained on 80% of the data set and evaluated using the remaining 20%,

which was repeated 10 times with different training subsets selected at random. The dropout with a
rate p was applied during training after each layer except for the output, with p = k

40 , k = 1, . . . , 20.
We chose the value of p that minimized the average relative error. The learning rate for gradient
descent was initially set at 0.1 and decreased by a factor of 10 if the average loss did not reach a new
minimum for 20 consecutive epochs. The training was stopped after the learning rate decreased
below 0.001 (this always required less than 2000 epochs).

The average relative error of the energy estimates was 24.0% to 26.0% for the networks trained
on monoscopic images and 12.5% to 14.0% for the networks trained on stereoscopic images. For
the similar networks adding a second input image decreased the average relative error by a factor
of 1.7–2.0 (fig. 4).

We also trained the neural networks for monoscopic and stereoscopic images with W = 100
using the gamma events from the first data set (described in section 2). The average relative error
of the energy estimates was 22.0% for monoscopic images and 16.0% for stereoscopic images.

4. Conclusion

We compared the performance of convolutional neural networks trained on simulated mono-
scopic and stereoscopic images from TAIGA telescopes. We found that adding a second telescope
image significantly improved both the accuracy of the primary particle type identification (hadron
suppression rate increased from 74–98 to 340–454, ROC AUC increased from 0.9889–0.9916 to
0.9975–0.9983) and the accuracy of the gamma ray estimation (average relative error decreased
from 24.0%–26.0% to 12.5%–14.0% and 22.0% to 16.0% on the two data sets we used).
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Figure 4: Average relative error of energy estimation by neural networks trained on monoscopic (triangles)
and stereoscopic (double triangles) images.
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