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1. Introduction

The Large High Altitude Air Shower Observatory (LHAASO) project[1, 2] is a new generation
instrument, built at 4410meters of altitude in the Sichuan province of China, with the aim of studying
the energy spectrum, the elemental composition and the anisotropy of cosmic rays in the energy
range between 1012 and 1017 eV with unprecedented sensitivity, as well as to act simultaneously
as a wide aperture (∼2 sr), continously-operated gamma-ray telescope in the energy range between
1011 eV and 1015 eV.

As a sub-array of LHAASO, the square kilometer array (KM2A) is mainly designed to cover
a large fraction of the northern sky to hunt for gamma-ray sources at energies above 10 TeV. The
whole KM2A array will consist of 5195 electro-magnetic detectors (EDs, 1 m2 each) and 1188
muon detectors (MDs, 36 m2 each), deployed over an area of 1.3 km2. Even though the detector
construction is still underway, a half of the KM2A array has been operating stably since the end of
2019. Figure 1 shows the planed layout and the fiducial area of the current KM2A half-array used
in this analysis. The atmosphere shower and detector response have been simlated for KM2A half-
array, and the event reconstrucion including the core, direction and energy reconstruction and the
gamma-ray/cosmic-ray discrimination have been implemented on the simulated and experimental
data[3].
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Figure 1: Planned layout of all LHAASO-KM2A detectors[3]. The red squares and blue circles indicate the
EDs and MDs in operation, respectively. The area enclosed by the cyan line outlines the fiducial area of the
current KM2A half-array used in this analysis.

Similar to the Fermi-LAT and DAMPE gamma-ray analysis[4], we are developing a 3D like-
lihood analysis software for the KM2A data. Based on the experimental data, Monte-Carlo sim-
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ulations and the pointing track of the arrays, the 3D likelihood analysis counld fit source models
of arbitrary morphology to the sky image, get the energy spectra information and detection sig-
nificances simultaneously. The analysis with this software could give consistent results with those
using traditional method[3].

2. Instrument Response Functions from Simulation Data

Instrument Response Functions (IRFs) including the effective area, point-spread function and
energy dispersion represent the performance of the detections like efficiency, angular and energy
resolution[5]. The effective area, �eff (�, Ê), is product of the geometrical cross-section area, the
efficiency of event trigger, reconstrucion and selection for gamm-ray with energy � and direction
Ê in detector reference frame. The point spread function, %(Ê′, �, Ê), and the energy dispersion,
� (� ′, �, Ê), are the probability distributions of the reconstructed direction Ê′ and reconstructed
energy � ′ for gamma-ray with energy � and direction Ê respectively. Given the spatial and spectral
model of gamma-ray source � (�, ?̂), where ?̂ refers to the celestial direction of gamma-ray source,
the expected distribution of observed gamma-ray photons is

A (� ′, ?̂′) =
∫ ∫ ∫

� (�, ?̂)�eff (�, Ê(C, ?̂))%(Ê′(C, ?̂′), �, Ê(C, ?̂))� (� ′, �, Ê(C, ?̂))3�3Ω3C,

where ?̂′ is the reconstructed celestial directions of the photons. The integrals are over the time and
energy range of interest and the solid angle in the celestial reference frame.

We research the KM2A half-array IRFs for gamma-ray detection as functions of primary
energy and incident angle from simulation data. The simulation gamma-ray events are sampled
in the energy range from 1 TeV to 10 PeV following a powerlaw function with a spectral index of
-2. The zenith angle is distributed from 0◦ to 70◦. The sample area is a circular region with a
sufficiently large radius of 1000 m. We binned the simulation data into 20 logarithm energy bins
from 1 TeV to 10 PeV and 10 secant of zenith angle bins from 0◦ to 60◦.

Effective area is the numerical function varying with energy of a gamma-ray photon and its
incident direction in theinstrument reference frame. The effectivate area for the bin centering �8

and \ 9 is

�eff (�8 , \ 9) =
#?0BB,8, 9

#B8<D,8, 9

( cos \ 9 ,

where #B8<D,8, 9 and #?0BB,8, 9 are the number of photons generated in the simulation and passed the
trigger, reconstrucion and selection. ( is the sample area. Here we ignore the phi dependence of
effective area. In the left panel of Figure 2 shows the effective areas in different zenith angle range.

The point spread function (PSF) is the probability distribution of the deviation between recon-
structed and simlated direction XE = |Ê′ − Ê |. We binned the deviation as the square of the angle,
and get the distribution functions related with the energy and incident angle. The middle panel
of Figure 2 shows some example of PSF. In the same energy, the less incident angle means the
better angular resolution. In the same incident angle, the higher energy means the better angular
resolution.

The energy dispersion is the distribution of reconstructed energy, it can be represented by
the energy translation matrix between reconstructed and simulated energy. The right panel of
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Figure 2 shows the energy translation matrix in one incident angle bin. The colorbar represents the
probability density within each simualed energy bin.
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Figure 2: The IRFs obtained from the simulation gamma-ray data for KM2A half-array. The left panel is
the effective area in different incident angle range, the middle panel is the PSF example in different energy
and incident angle range, the right panel is the energy dispersion example in one incident angle bin.

3. Exposure and Likelihood Analysis

For a particular source in the sky, its direction in the detector reference frame varies with time.
Since the IRFs vary appreciably across the KM2A’s FoV, we define the exposure n for any given
energy � and direction in the sky ?̂ as the integral of the effective area over the time range of
interest,

n (�, ?̂) =
∫

�eff (�, Ê(C, ?̂))3C.

The exposure can also be expressed as an integral over the solid angle in the detector reference
frame,

n (�, ?̂) =
∫

�eff (�, Ê)Cobs(Ê, ?̂)3Ω.

Here the Cobs is defined as the total time which KM2A has observed the direction ?̂ with director
frame direction Ê during the time range of interest. Figure 3 shows the exposure map of KM2A
half-array at 10 TeV in the equator coordinate with Aitoff projection.

We characterize a source by its photon flux density � (�, ?̂, C; ®_), here ®_ is the parameters
needed to be fitted in the source model. In order to reduce the computational burden, we assume
the source is stationary during the time range in each likelihood analysis. For a variable source,
time dependence of the flux can be achieved by repeating the analysis in finer time bins. The model
predicted photon rate in the bin 8 9 (centered at �8 and ?̂ 9) from source : is:

A8 9: (� ′8 , ?̂′9 , ®_:) =
∫ ∫

� (�, ?̂; ®_:)n (�, ?̂)%( ?̂′9 , �, ?̂)� (�
′
8 , �, ?̂)3�3Ω.

The predicted photon distribution is compared with the observed data to determine the model
parameters. We binned the data into counts cube according to the reconstructed energies and
directions. For each bin, the photon number # follows a Poisson distribution with unknown mean
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Figure 3: The exposure map of KM2A half-array at 10 TeV in the equator coordinate with Aitoff projection.

': ?(#; ') = '# /#!4−'. Taking into account all the bins with numbers {#8}, the Poisson
distribution becomes

?({#8}; {'8}) =
#bins∏
8=1

'
#8

8

#8!
4−'8 .

With themodel predicted photon rates and the reconstructed data, and based on the Poisson statistics,
we construct the binned likelihood function (in logarithm form) by summing over all #bins bins and
#B sources

log ! ( ®_) =
#bins∑
8, 9=1

(
−

#B∑
:=1

'8 9: + #8 log
#B∑
:=1

'8 9:

)
.

Where '8 9: is model expected photon numbers in bin 8 9 from source : . By maximizing the
likelihood function, we can fit the free parameters in the source model to get the best-fit values. By
decreasing one from the maximal likehood value, we can get the errors of free parameters. The
confidence level of source : is described by the test statistics

)(: = −2(log ! ( ®_0,:) − log ! ( ®_0)),

where the ®_0 is the best-fit value of model parameters and ®_0,: is the best-fit parameters without the
source : includes in the model. The)(: follows a j2 distribution with ℎ−< degrees of freedom[6],
where ℎ and < are the number of free parameters in the model with/out source : .

4. Implementation and examples

The code is written with python, based on the NumPy[7], SciPy[8], AstroPy[9], andMinuit[10]
package. For expandability, the software are structured with modules. The input modules include
SkyMap, IRFs, SpatialModel, Spectrum, Model and fitRegion. The process modules in-
clude Exposure, Source, LikelihoodBase and BinnedLikelihood. LikelihoodAnalysis
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is the ouput module. We also provide some scripts for users including plotCountsMap.py,
plotfitRegion.py, plotSpatailModel.py, plotSpectrum.py and BinnedAnalysis.py.
The fitRegion and model file are described with YAML format.

As examples, Figure 4 shows the counts map around the Crab Nebula binned with 0.1*0.1
degree2 with CAR projection and fit region around Cygnus Cocoon which is in a 6◦ radius cir-
cle region around (RA=307.17◦, DEC=41.17◦) and removed a 1.5◦ radius circle region around
(RA=304.85◦, DEC=36.80◦) plotted with plotCountsMap.py and plotfitRegion.py scripts.

Figure 5 shows the spataial map which is a extended source centered at (RA=307.65◦,
DEC=40.93◦) with a Gaussian width of 2.13◦ and power-law spectrum 3#/3� = #0(�/�0)Γ
with #0 = 9.3×10−13 cm−2s−1TeV−1, Γ = −2.64, �0 = 4.2 TeV of Cygnus Cocoon[11] plotted with
plotSpatialModel.py and plotSpectrum.py scripts.

Figure 6 shows the spectral energy distribution (SED) and test statistics (TS) map of the Crab
Nebula fitted with BinnedAnalysis.py. Compared with the results in [3], the analysis with this
software could give consistent results with those using traditional method.
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Figure 4: Left panel shows the counts map around the Crab Nebula binned with 0.1*0.1 degree2 with CAR
projection, right panel shows the fit region around Cygnus Cocoon which is in a 6◦ radius circle region around
(RA= 307.17◦, DEC=41.17◦) and removed a 1.5◦ radius circle region around (RA=304.85◦, DEC=36.80◦).

5. Summary

The very-high-energy gamma-ray sky is an important observation target for KM2A, the sub-
array of LHAASO. To facilitate analyzing the KM2A gamma-ray data, we have developed a
dedicated software, which implements maximum likelihood analysis to extract the parameters of
sources that contribute to the observed gamma-rays. The KM2A IRFs that are essential to the
gamma-ray data analysis, including the effective area, PSF and energy dispersion, are also derived
based on statistics from simulation data. Applying the KM2A IRFs and the software that are detailed
in this paper, scientific analyses of the gamma-ray data could be carried out to obtain the best-fit
spectral parameters, fluxes and corresponding statistical uncertainties, and further the spectral
energy distribution, promoting our understanding of the nature of very-high-energy gamma-ray
phenomena.
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Figure 5: Cygnus Cocoon spatial map which is a extended source centered at (RA=307.65◦, DEC=40.93◦)
with a Gaussian width of 2.13◦ and power-law spectrum 3#/3� = #0 (�/�0)Γ with #0 = 9.3 ×
10−13 cm−2s−1TeV−1, Γ = −2.64, �0 = 4.2 TeV of Cygnus Cocoon[11].
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Figure 6: The spectral energy distribution (SED) and test statistics (TS) map of the Crab Nebula.
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