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When very-high-energy gamma rays interact high in the Earth’s atmosphere, they produce cascades
of particles that induce flashes of Cherenkov light. Imaging Atmospheric Cherenkov Telescopes
(IACTs) detect these flashes and convert them into shower images that can be analyzed to extract
the properties of the primary gamma ray. The dominant background for IACTs is comprised
of air shower images produced by cosmic hadrons, with typical noise-to-signal ratios of several
orders of magnitude. The standard technique adopted to differentiate between images initiated
by gamma rays and those initiated by hadrons is based on classical machine learning algorithms,
such as Random Forests, that operate on a set of handcrafted parameters extracted from the
images. Likewise, the inference of the energy and the arrival direction of the primary gamma
ray is performed using those parameters. State-of-the-art deep learning techniques based on
convolutional neural networks (CNNs) have the potential to enhance the event reconstruction
performance, since they are able to autonomously extract features from raw images, exploiting the
pixel-wise information washed out during the parametrization process. Here we present the results
obtained by applying deep learning techniques to the reconstruction of Monte Carlo simulated
events from a single, next-generation IACT, the Large-Sized Telescope (LST) of the Cherenkov
Telescope Array (CTA). We use CNNs to separate the gamma-ray-induced events from hadronic
events and to reconstruct the properties of the former, comparing their performance to the standard
reconstruction technique. Three independent implementations of CNN-based event reconstruction
models have been utilized in this work, producing consistent results.
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1. Introduction

When a very-high-energy (VHE, 20 GeV < � < 300 TeV) photon reaches the Earth, its
interaction with the air molecules generates a cascade of relativistic particles that produces a dim
flash of Cherenkov light. If an Imaging Atmospheric Cherenkov Telescope (IACT) is inside the
Cherenkov light-pool of the gamma ray, the Cherenkov photons are collected by its reflector and
focused onto a camera made e.g. of photomultipliers (PMTs) in such a way that their arrival
directions are transformed in points of a (pixelized) shower image. Those images can then be
analyzed to extract the properties of the primary gamma ray.

The flux of incoming gamma rays is dwarfed by the flux of charged cosmic rays (CRs)
entering the atmosphere - mostly protons and Helium nuclei - that can mimic the signal which we
are interested in, resulting in a signal-to-noise ratio of about 1/1000 for bright VHE gamma-ray
sources. Fortunately, the different development of the cascades result in images of different shapes
and can be discriminated.

The Cherenkov Telescope Array (CTA) is the observatory that will host the next generation
of IACTs [1]. It will be built in two sites, each hosting tens of telescopes: one will be located in
the Northern hemisphere, at La Palma, the other one in the Southern hemisphere, in the Atacama
desert, in order to achieve full sky coverage. Three types of IACTswill be deployed: the Large-Sized
Telescope (LST), the Medium-Sized Telescope (MST) and the Small-Sized Telescope (SST). The
LST, with its 23m diameter detector and field of view of 4.3 degree diameter, is optimised to reach
the lowest achievable energy thresholds. The LST prototype is currently taking commissioning data
at La Palma.

In these proceedings we will investigate the application of state-of-the-art deep learning tech-
niques to the analysis of simulated images recorded by a single LST.

2. Event reconstruction for LST

In the context of IACTs, the event reconstruction consists of successfully fulfilling three tasks:
(i) separate gamma-ray events from hadronic events, (ii) reconstruct the energy of the gamma rays,
(iii) reconstruct their arrival direction.

The classical routine for the event reconstruction from images taken with LST, also illustrated
in Fig. 1, is based on classical machine learning algorithms called Random Forests (RFs), similarly
to the one adopted for the MAGIC telescopes (more detail about this analysis can be found in [2]).
Once the telescope is triggered, the raw analog signal of each PMT is sampled by an analog to
digital converter (ADC) and stored by the data acquisition system; from these raw data, signal is
integrated and the total number of photons (charge) and their averaged arrival times (peak times) in
the PMT are estimated, thus producing an image of two layers (charge and time). After the image
is produced, a cleaning procedure is applied in order to get rid of the pixels dominated by the night
sky background light and keep only those actually containing the shower image. Then, from the
cleaned image a set of parameters containing relevant information is extracted (e.g. intensity,
width, length, timing information, etc.).

Three Random Forest models - one per each of the aforementioned tasks - are trained on pa-
rameters extracted from simulated images. One is for event classification (gamma-like or hadronic),
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Figure 1: Standard LST event reconstruction scheme (orange arrows) compared to the deep learning
approach. After the raw analog signal is calibrated and the image generated, cleaning and parameter
extraction are applied to feed the Random Forests, while this step is skipped when using CNNs, accessing
the pixel-wise information.

whose output, called gammaness, is a parameter that can be interpreted as the likelihood that the
image belongs to a gamma-ray event. The other two are trained to predict energy and arrival
direction of the gamma rays respectively. These models are then applied to the images recorded by
the telescope.

The aim of this work is to perform and possibly improve this analysis skipping the cleaning
and parametrization step and using convolutional neural networks, in order to exploit the maximum
information contained in all the pixels to identify the signal.

2.1 Convolutional Neural Networks

Differently from Random Forests, recent deep learning techniques are able to autonomously
learn how to extract information from raw data, deciding by themselves which patterns of the dataset
are meaningful for the task addressed. Convolutional neural networks (CNNs) [3] are particular
deep learning methods that show their full power in image recognition. They look for relevant
features of the (raw) image by performing several convolutions with small square filters, and in the
end convert the pixel information into the abstract information at the output layer. This output is a
prediction of the quantity of interest (in our case gammaness, energy or arrival direction).

3. Setup

Three teams were involved in this project, performing three independent and different imple-
mentations of CNN-based event reconstruction models: PdVGG, CTLearn-TRN, and W-PhysNet.

3
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PdVGG PdVGG, developed by INFN Padova, addresses the event reconstruction with a single-
task approach, i.e. training one network for particle classification, one for energy and one for
direction reconstruction. Since state-of-the-art API for CNNs take rank 3 tensors as input (rect-
angular images, square pixels), and the LST camera is hexagonal composed of hexagonal pixels,
images need to be appropriately preprocessed in order to feed the networks. To perform this step,
images were fitted using bicubic interpolation and then resampled onto a rectangular lattice. A
handcrafted network of 13 layers based on the Visual Geometry Group architecture (VGG) [5] has
been implemented. VGG is a solid, popular architecture, often used as a baseline model in the deep
learning community. Among the different techniques used, the Cyclic Learning Rate technique [6]
allows the network to explore different minima of the so-called loss function1, obtaining different
network configurations in one single training.

CTLearn-TRN Developed within the CTLearn framework2 [4], this implementation also uses
single-task approach to tackle the event reconstruction. The network is based on an architecture
called Thin-ResNet (TRN) of 34 layers. ResNet [7] is one of the most famous and powerful archi-
tectures for classification nowadays. An attention mechanism (or content aware mechanism) called
squeeze and excitation [8] was also used: during the training it helps the network to put emphasis
on the most relevant features of the image representation that is found at each layer. The images
were preprocessed with linear interpolation.

W-PhysNet W-PhysNet DA [9], developed using the GammaLearn framework3, is a multi-task
architecture, i.e. one single network able to perform the full event reconstruction, thus accomplish-
ing all the three tasks of particle classification, energy and arrival direction reconstruction. The
networks are fed using IndexedConv [10], a technique that, knowing the nearest neighbor of each
pixel, allows to perform convolution and pooling operations on non-Euclidean grid of data, with no
need for interpolation. The model is based on a ResNet architecture of 56 layers. Like CTLearn,
it uses squeeze-and-excitation technique, plus another attention mechanism called Dual Attention
(DA) and other techniques.

3.1 Dataset

The dataset used has been obtained with CORSIKA v6.9 [12] and its IACT/ATMO extension4
and the sim-telarray v2018-11-07 package [13], then processed with DL1 Data Handler
v0.7.45 and ctapipe v0.6.26. It is composed of full simulated events as recorded by a single
LST at LaPalma pointing at 20 deg. zenith angle in the South direction, and for air showers from
primary protons, electrons, diffuse gamma-rays and pointlike gamma rays. Diffuse events come
from random directions within a view-cone of 10 degrees, while all pointlike gamma rays come
from a single specific source in the sky at a 0.4 degree offset from the center of the camera. A

1A function that, during the training of a CNN, measures howmuch the predicted values deviate from the true, a-priori
known values. Thus, the goal of the algorithm is to find the best parameters of the network that minimize this function.

2https://github.com/ctlearn-project/ctlearn
3https://gitlab.lapp.in2p3.fr/GammaLearn/GammaLearn
4https://www.mpi-hd.mpg.de/hfm/ bernlohr/iact-atmo/
5https://zenodo.org/record/4575505#.YNNMI1kzaV5
6https://cta-observatory.github.io/ctapipe/
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(a) (b)

Figure 2: Spectra of pointlike gamma-ray (a) and proton (b) events (after trigger) as a function of the
simulated energy, obtained using Higher intensity cuts translate into higher energy thresholds.

set of ∼ 9 · 105 diffuse gamma rays and ∼ 9 · 105 protons was used to train the network, while a
set of ∼ 6 · 105 electrons, ∼ 2.5 · 105 protons and 106 pointlike gamma rays was used to test the
performances.

Data selection The dataset comprises many faint images, especially at lower energies, and
many (∼ 30%) with shower image not well contained in the camera - thus selection cuts have been
applied, depending on (i) the intensity parameter, namely the total charge in photoelectrons
(phe) contained in the image, and (ii) the leakage2 parameter, defined as the fraction of the image
intensity contained in the two outermost rings of pixels. Four different image quality levels were
defined on which the CNNswere trained and tested: no-cuts comprising all the images, low-cuts
(intensity > 50 phe, leakage2 < 0.2), mid-cuts (intensity > 200 phe, leakage2 < 0.2)
and high-cuts (intensity > 1000 phe, leakage2 < 0.2). The effect of the different cuts on the
dataset can be observed on the event energy distributions shown in Fig. 2: selecting higher-quality
images comes at the price of discarding many low-energy events (∼ 90% using high-cuts). Since
intensity is roughly proportional to the energy of the gamma ray, each level is focused on a specific
energy range - indeed, a higher intensity threshold translates into a higher energy threshold.

4. Results

Once the networks performed the event reconstruction on the test images, Instrument Response
Functions (IRFs) have been computed using the pyirf7 library (a prototype for IRF generation for
CTA), selecting gamma-like events by performing cuts on the gammaness parameter and on the \2

parameter (that is, the squared angular separation between the simulated and reconstructed source
position). These cuts are different for each energy bin, optimized to reach the best sensitivity.
Sensitivity is defined as the minimum flux from a point-like source that it is able to detect with
a 5-f significance, with additional constraints in the number of excess events and signal-to-noise
ratio as defined in CTA performances8. Random Forest models were produced and tested on the

7https://github.com/cta-observatory/pyirf
8https://www.cta-observatory.org/science/cta-performance/
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same dataset (using low-, mid- and high-cuts), in order to compare our results to the classical
analysis, using cta-lstchain v.0.5.29 and the source-independent analysis (see [11] for further
reference).

The figures of merit obtained using low-cuts, mid-cuts and high-cuts respectively are
shown in Fig. 3, Fig. 4 and Fig. 5. Despite some small difference, the performances obtained
with the three implementations are very similar. Energy resolution is defined for each energy bin
as the 68th percentile of the distribution |�reco − �true |/�true; even using different cuts, the curves
show the same trend and similar performances across all the energy ranges, especially in the 500
GeV−10 TeV range where a resolution between 13% − 18% is reached, while for energies below
50 GeV it spans between 20% − 40%. The angular resolution, computed as the square root of
the 68th percentile of the \2 distribution (that is the angular radius of the circle centered on the
simulated source position containing 68% of the reconstructed gamma-ray events), ranges between
0.3◦ − 0.5◦ at low energies below 50 GeV using low-cuts, down to a tenth of degree or less in the
range above 2 TeV. Angular resolution is sensitive to the different quality cuts up to 1 TeV, while
for higher energies the curves reach the same values. The effective collection areas, defined as
the geometrical area around the telescope in which a gamma ray triggers the instrument, are also
very similar, spanning between 103 − 105 m2 at energies below 200 GeV, and flattening around
1.5 · 105 m2 for higher energies (using low and mid-cuts; with high-cuts, the collection area is
considerably smaller below 1 TeV, due to the high percentange of discarded events). In order to test
the stability of the results, each team conducted ten times each training of the networks, using ten
random seeds to initialize the parameters of the CNNs: the error bands displayed in the graphs are
computed as the 16th and 84th percentiles around the median of the ten curves.

The performances are compatible with the ones obtained the Random Forests, although we
can see a general enhancement brought by the CNNs using low- and mid-cuts, especially at the
lower energies below 200 GeV. CNNs clearly perform better in the direction reconstruction task,
where for example the Random Forests are overtaken up to more than 40%. The collection areas
computed using the Random Forests and CNNs are similar, although the former exhibit a dip at
energies around 700 GeV - 1 TeV. This is explained by more severe gammaness cuts in these bins:
indeed, optimization for the best sensitivity led to different cuts for each model (CNN of RF), and
the collection area is proportional to gamma efficiency (i.e. the ratio between the number of selected
gamma candidates and the number of true simulated gamma-ray events for each bin). Likewise,
more loose cuts in the mid-energy bins explain the larger collection area obtained with PdVGG.
Finally, CNNs show better differential sensitivity at energies below 1 TeV (which is the target range
of LSTs) and above 3 TeV, while they tend to give worse performances in the 1 − 3 TeV window.

5. Conclusions

In these proceedings we described three independent implementations of CNN-based event
reconstruction models applied to the full event reconstruction of one single LST. We showed that
all three lead to very consistent results, confirming that CNNs are an effective and reliable tool
when applied to simulated data. We compared the results to those obtained with the standard RF

9https://github.com/cta-observatory/cta-lstchain
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Figure 3: Instrument response functions obtained using low-cuts level. From left to right: ratio between
CNN and RF sensitivities (lower is better); effective collection area (higher is better); energy resolution
(lower is better); angular resolution (lower is better). Error bands are given by the 16th and 84th percentiles
around the median of ten curves obtained training the CNNs ten times.

Figure 4: Instrument response functions obtained using mid-cuts level.

Figure 5: Instrument response functions obtained using high-cuts level.
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technique, showing that CNNs are able to bring improvements to the performances, especially at low
energies, probably thanks to the ability to exploit the pixel-wise information that is not accessible
for Random Forests.

It is important to mark once again that these results were obtained using simulations, and
we cannot infer that the performances will be the same when applied to data. In general, CNN
analysis is less robust against variations in data due to small effects present in the data that are not
properly simulated, as the noise present in each field of view the telescope is looking at. A first
CNN-based analysis of real data from the LST-1 prototype is presented in another contribution of
these proceedings [14]. Moreover, cta-lstchain standard analysis has been recently optimized
(the current v0.7 performs better than 0.5.2), and also there is clear improvement when using the
source-dependent analysis instead of the source-independent one used for this comparison (see [11]
for further reference). Deep learning is a very dynamic and active research field, and there is surely
room for further enhancement of CNN-based analyses, via testing new, powerful state-of-the-art
deep learning techniques, or for example exploring custom models concatenating in the input both
the images and the extracted parameters.
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