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On 14th January 2019, the MAGIC collaboration achieved the first significant detection at TeV
energies of a gamma-ray burst (GRB), namely GRB 190114C. This observation sets the first
experimental proof of very high energy (VHE, > 100 GeV) gamma-ray emission in GRBs, after
more than 50 years from the first GRB detection and many searches with Cherenkov telescopes in
the last decades. The data collected by MAGIC and by more than 20 other ground-based and space-
borne instruments, spanning 17 orders of magnitude in energy, revealed a new GeV-TeV emission
component in the GRB afterglow. This unprecedented multi-wavelength dataset, including VHE
data for the first time, allowed a detailed study of the broadband emission. A one-zone synchrotron-
self Compton scenario with internal y-y absorption could be used to describe the broadband
emission, using parameters compatible with those found in previous studies of GRB afterglows
below the GeV energy range. This detection opened a new era in the studies of GRBs, leading
to new questions such as the universality of TeV emission in different types of GRBs. In this
contribution, we will present the GRB follow-up program performed by the MAGIC collaboration,
which started more than 15 years ago. We will highlight the results on GRB 190114C, discuss
the implications for GRB physics, and report the latest developments and the prospects for future
observations of GRBs with the MAGIC telescopes.
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1. Introduction

Gamma-ray bursts (GRBs) are transient sources routinely observed as bright flashes of gamma-
ray radiation, the so called prompt emission, which is characterized by rapid flux variability down to
millisecond scales. This first emission phase is usually very brief, lasting from fractions of a second
to hundreds of seconds. According to its duration, GRBs are classified as long and short, with 2 s
as separation value. The prompt phase is followed, with partial overlap in time, by the afterglow, a
long lasting (from days to weeks, in some cases months) but fainter emission decreasing with time.
Differently from the prompt, the afterglow has been detected at different wavelengths, from radio
to GeV gamma rays.

GRBs are the result of catastrophic events involving compact objects, such as the explosion of
massive stars or the merger of binary systems of neutron stars. These events lead to the birth of
black holes or neutron stars, from which collimated jets of plasma can be ejected at ultrarelativistic
velocities. In the inner regions of the jet, the gamma rays of the prompt phase are produced via a
not-yet-well-established mechanism (e.g. synchrotron radiation, magnetic reconnection). The jet
will eventually interact with the surrounding medium, generating shock waves (in jargon they are
called external shocks) where particles are accelerated and emit radiation. Within this picture, the
broadband afterglow emission from radio to GeV gamma rays is well explained as synchrotron
radiation produced by electrons accelerated at the external shocks.

In recent observations, hints of a possible new component in the afterglow were reported
in a few GRBs detected by the Fermi-LAT instrument. Driven also by theoretical models, the
presence of such additional component can be proved by observations in the very high energy range
(VHE, E > 100GeV) performed with Imaging Atmospheric Cherenkov telescopes (IACTs). A
detection at such high energies can provide invaluable information about the particle acceleration
processes and jet dynamics. The observations of GRBs with IACTs has been historically challenging
because of both physics and technical reasons, such as the strong flux absorption at VHE due to
the extragalactic background light (EBL), or the delay in the observation needed to repoint the
telescopes. Overcoming these challenges, here we report the first detection at TeV energies of the
long GRB 190114C achieved by the MAGIC telescopes. For more details we refer to [1] and [2].

2. MAGIC observation and detection of GRB 190114C

The MAGIC telescopes are two twin Cherenkov telescopes of 17 m diameter located at 2200 m
above sea level in the observatory on the Roque de Los Muchachos mountain in La Palma, Canary
Islands, Spain. As typical for IACTs, they have a limited field of view, around 3.5° for MAGIC.
The detection of GRBs is one of the primary scientific targets of MAGIC. The low energy threshold
(~ 50 GeV), the high sensitivity at sub-TeV energies and the fast slewing speed (7 °s~! in the so
called fast mode) are key parameters for such goal. To reduce the latency and issues in performing
GRB observations, MAGIC implemented a fully automatic reaction to GRB alerts received from the
Gamma-ray Coordinates Network (GCN; https://gcn.gsfc.nasa.gov/) through its automatic
alert system (AAS, see [1]).

On 14th January 2019, at 20:57:03 UT (hereafter Tp), the Swift-BAT and Fermi-GBM instru-
ments detected GRB 190114C, accompanied also by a bright optical counterpart. GRB 190114C
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Figure 1: Observed (grey open circles) and intrinsic (blue filled circles) time integrated spectra of
GRB 190114C between Ty + 62s and Ty + 2454 s. The best fit power-law function to the intrinsic spec-
trum is represented by the thin black solid line, while the thin grey line is obtained from such curve after
taking into account the EBL attenuation. The grey dashed line is the best fit power-law function to the
observed spectrum. Figure extracted from [1].

was later detected by other instruments such as Fermi-LAT, AGILE/MCAL, INTEGRAL/SPI-ACS,
Insight/HXMT and Konus-Wind. The optical observations performed by the Nordic Optical Tele-
scope (NOT) and the Gran Telescopio Canarias (GTC) allowed the determination of the redshift,
z = 0.425. According to the duration of the burst, GRB 190114C is classified as a long GRB,
confirmed by the detection of an associated supernova component about 15 days after 7Tp.

MAGIC received the alert containing the coordinates of GRB 190114C provided by Swift-BAT
at 20:57:25 UT (Tp + 22s), triggering the automatic follow-up procedure. The telescopes started
tracking the source at Ty + 50s, while the data taking started at 7p + 57 s, with stable acquisition
rates starting from 7y + 62 s. The exposure of the observation was 4.12 h, covering a zenith range
from 55.8° to 81.1°. The weather conditions were very good, but due to the presence of the moon,
the night sky background was approximately 6 times brighter than the one during dark nights
observations, resulting in an higher energy threshold.

Already in the MAGIC real-time analysis, GRB 190114C was detected at the 20 sigma level in
the first 20 minutes of data, subsequently reaching 50 sigma (see Extended Data Figure 2 in [1]) in
offline analyses that included proper calibrations and a MC tuned to describe the actual performance
of MAGIC during these observations.

The time integrated spectrum of GRB 190114C as observed by MAGIC between Ty + 62 s and
Ty + 2454 s, after proper unfolding, is shown in Figure 1. This can be described by a simple power
law with index aobs = —5.34 = 0.22 from 0.2 TeV extending up to 1 TeV. Figure 1 also shows the
intrinsic spectrum of GRB 190114C, after taking into account the EBL absoprtion expected for
the redshift of this GRB. Again, a power law describes well such spectrum, with spectral index
Qint = —2.22’:%:%2, without any evidence for any spectral break or cutoff. Also, the spectrum extends
beyond 1 TeV at 95% confidence level. This is the first time that photons with such energies have
been detected from a GRB. This is a remarkable result, given the large EBL absorption, about
a factor 300 at 1 TeV. Moreover, the intrinsic spectral index close to aj,, = —2 implies that the
energy radiated in the VHE range is considerable, and almost comparable to the one emitted at
lower energies.
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Figure 2: a: energy flux light curve for GRB 190114C by different instruments: MAGIC (red circles), XRT
(green band) and LAT (red band). b: temporal evolution of the intrinsic spectral index measured by MAGIC.
Figure extracted from [1].

In order to investigate the origin of the detected VHE emission, Figure 2 shows the MAGIC
intrinsic energy flux light curve computed between 0.3 and 1 TeV after EBL correction, produced in
six time bins covering the first 40 minutes of the observation. The flux measured at 0.3 TeV during
the first few seconds was around 100 times higher than the one of the Crab Nebula at the same
energy, making GRB 190114C the brightest source at 0.3 TeV. The light curve does not show any
variability, and follows a simple temporal power-law decay with index 8 = 1.60 = 0.07. The light
curves measured by Fermi-LAT and Swift-XRT in the 0.1 — 10 GeV and 1 — 10keV energy ranges
respectively show a similar temporal decay. This supports an afterglow origin for the emission
detected by MAGIC. Additionally, temporal and spectral properties as measured by Swift-BAT and
Fermi-GBM after Ty + 25 s are typical of afterglow emission, strengthening the same conclusion in
the case of MAGIC.

After establishing the afterglow origin of the VHE emission, we investigated the responsible
physical process. The similar behavior of MAGIC and XRT light curves points to a close rela-
tion between the processes producing the emission in the VHE and X-ray ranges. In the case of
GRB 190114C, as for most GRB afterglows, the broadband afterglow emission up to GeV energies
can be well described as synchrotron radiation from ultrarelativistic electrons accelerated at the
external shock. However, synchrotron photons reach a maximum energy (the so called synchrotron
burnoff limit), which depends on the time-dependent bulk Lorentz factor of the GRB jet, I', (1),
through the relation Egynmax ~ 100(I',(#)/1000)GeV. Figure 3 shows the time-dependent maxi-
mum energy of synchrotron photons for two different density profiles for the interstellar medium.
Comparing the synchrotron burnoff limit as a function of time with the photon energies measured by
MAGIC (blue-scale colored bins), we can conclude that the synchrotron process cannot explain the
emission detected in the VHE range, unequivocally proving the presence of a separate component
in the afterglow of GRB 190114C, as discussed in the next section.
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Figure 3: Time and energy distribution of the photons detected by MAGIC. The dotted and dashed curves
correspond to the maximal energy of synchrotron photons in the standard afterglow theory for a homogeneous
density and wind density profiles respectively. Figure extracted from [1].

3. A new emission component in the afterglow

The exceptional brightness of GRB 190114C and its detection by MAGIC triggered an extended
multi-wavelength campaign. As shown in Figure 4, the data available for this GRB span 17 orders
of magnitude in energy, collected by more than 20 different ground- and space-based instruments.
In particular, in the early afterglow phase, there are contemporaneous data available in the keV
(XRT, BAT and GBM), GeV (LAT) and TeV (MAGIC) energy ranges. This allows for a temporal
spectral analysis of the afterglow emission in order to investigate the physical process underlying
the emission in the MAGIC energy range.

As anticipated in section 2, synchrotron radiation cannot explain the energies of the photons
detected by MAGIC. The simplest explanation is synchrotron self-Compton (SSC) radiation in the
external forward shock. In such process the electrons producing the synchrotron photons can up-
scatter via the Compton mechanism those photons, increasing their energy and producing a second
peak in the spectral energy distribution. In order to assess the viability of SSC as the mechanism
producing the TeV emission, the broadband data from keV to TeV energies was modelled within the
SSC scenario at the external shock in the GRB afterglow.

Figure 5 presents the result of the SSC modeling for two different time intervals, taking into
account internal y — y absorption and scattering in the Klein-Nishina regime for the intrinsic
spectrum (blue solid line), and EBL absorption for the observed spectrum (black solid line). This
marks the first time that a new component is found in the afterglow of a GRB. Moreover, the
SSC process can contribute to the LAT emission at late times (e.g. see extended data Figure 7 in
[2]), supporting past hints of an additional component from GeV observations. Remarkably, the
parameters of the modeling are compatible with the values found in past GRB afterglows studies
considering data from the radio to the GeV band. This may indicate that the SSC mechanism could
be common in GRB afterglows, as discussed in Section 4.

Finally, other processes were considered in order to explain the TeV emission. Hadronic
processes, like synchrotron radiation from protons, can produce TeV photons. However the energetic
required to reproduce the flux levels measured by MAGIC are orders of magnitude larger than what
is typically available in GRBs. Given the relatively fast reaction of MAGIC, it is also interesting to
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Figure 4: Multiwavelength energy flux light curve of GRB 190114C from radio to gamma rays. The vertical
dashed line denotes the approximate end of the prompt phase. Figure extracted from [2].
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Figure 5: Broadband spectra modelling for two different time intervals in the synchrotron and SSC afterglow
scenario. The thick blue curve corresponds to the intrinsic spectrum, the thin black line to the observed
spectrum. The dashed black line shows the SSC emission level when y — y internal absorption is neglected.
Figure extracted from [2].

investigate if SSC emission from the prompt phase may explain the measured TeV radiation. In the
case of GRB 190114C, it is found that SSC radiation in the prompt may contribute to ~ 20% of the
observed flux for times ¢ < 100 s, favoring the afterglow origin of the TeV emission.

4. Prospects for future GRB follow-ups with MAGIC and conclusions

The detection of a new component in the afterglow of GRB 190114C definitely opened a new
era in GRB physics. Nevertheless, such awaited discovery poses new challenges and questions
for future GRB follow-ups. First of all, as shown in Section 3, the typical afterglow parameters
inferred from the SSC modelling could imply that TeV emission is common in GRB afterglows.
Since the properties of GRB 190114C were not exceptional for a long GRB, TeV emission could
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be detected if the distance from the GRB is low enough. This has been demonstrated by other three
long GRB detections in the past 3 years: GRB 180720B [3] and GRB 190829A [4] by H.E.S.S.
and GRB 201216C [5] by MAGIC. In particular, the first two cases proved that VHE emission can
be detected at very late times deep in the afterglow phase. The case of GRB 201216C instead is
particularly interesting because of the high redshift of the source, z = 1.1. It is worth noticing that
the VHE gamma-ray emission detected for the three long GRBs that have been recently published
(namely GRB 190114C, GRB 180720B and GRB 190829A), can be successfully described through
the SSC mechanism.

A second natural question arising from the detection of VHE afterglow emission is whether
a similar mechanism may be present in the prompt phase of GRBs. This search is particularly
challenging for IACTs, given the intrinsic delay in starting the GRB observations. In this sense,
MAGIC fast slewing plays a crucial role in such a quest, e.g. MAGIC could start data taking 24 s
after the burst for GRB 160821B. In the case of long GRBs, this is a promising asset towards the
detection of the prompt or prompt-to-afterglow phases.

An additional point concerns short GRBs. Given the strong link with the searches of electro-
magnetic counterparts from gravitational wave events, the detection of a TeV component in this
class of GRBs may help to further characterize the environment and particle acceleration processes
after the merger event. Interesting results in such direction were obtained by MAGIC for the short
and nearby (z = 0.16) GRB 160821B [6].

Finally, the detection of TeV photons from distant sources like GRBs opens up the possibility
to perform studies related to new physics, such as the search for Lorentz invariance violation (LIV)
effects (see e.g. [7]).

Clearly, the VHE era of GRBs has just started. The astonishing results recently achieved are
very promising for future follow-ups with MAGIC. This instrument proved to have what it takes in
order to achieve the ambitious goal of characterizing GRBs at VHE gamma rays.
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