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In February 2019, a flaring state of the extreme blazar candidate TXS 1515–273 was registered by
the Fermi-LAT, which triggered observations with the MAGIC telescopes and the X-ray satellites
Swift, XMM-Newton and NuStar. The observations led to the discovery of the source at very-
high-energy (VHE, 100 GeV ≤ � ≤ 100 TeV) gamma-ray energies and the detection of short
time scales of variability (∼1 h) in several X-ray bands. The analysis of the observed variability
helped us to constrain the physical parameters of the emission region. Thanks to the high-quality
X-ray data, the synchrotron peak location was determined. The source was classified as a high
synchrotron peaked source during the flaring activity. We constructed the broadband spectral
energy distribution from radio to TeV. We interpreted it assuming leptonic emission and taking
into account the constraints from the X-ray variability. We tested two scenarios: a simple one-zone
model and a two-component model. Both models were found to describe the data well from X-ray
to VHE gamma ray, but the two-zone model allows for a more accurate modelling of the emission
at radio and optical energies.
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1. Introduction

Blazars, which are jetted active galactic nuclei (AGNs) seen at small viewing angles, are
the most numerous gamma-ray sources in the extragalactic sky. The spectral energy distribution
(SED) of blazars exhibits a double-bumped structure. The first bump in the SED, peaking in the
frequency range from infrared to X-rays, is usually interpreted as to synchrotron emission from
ultra-relativistic electrons in the jet. The high-energy bump peaks above MeV energies and is
commonly explained as due to inverse Compton (IC) scattering, possibly of the same electron
population on their synchrotron emission (synchrotron self-Compton, SSC).

There are two subclasses of blazars: flat spectrum radio quasars and BL Lac objects. The
peak frequency of the synchrotron bump in the SED leads to a further classification of blazars into
low-, intermediate-, and high-frequency peaked sources (LSP, ISP and HSP, respectively [1]). Only
a complete energy coverage from the radio to TeV energy range (multi-wavelength observations,
MWL) allows for a proper understanding of the emission mechanisms. Moreover, given the
variability of the objects, shown in different energy ranges, simultaneous observations are required.

Up to and including the Third Fermi-LAT Catalog [2], TXS 1515–273 had been classified as
a blazar candidate of uncertain type [3]. Only in the Fourth Fermi Catalog [4] was it classified as
a BL Lac object with a photon index ' 2. The redshift was also unknown until recently when the
observations of [5, 6] determined it to be z=0.1285. The MAGIC telescopes observed TXS 1515–
273 during February 2019 as a part of a MWL campaign organized after flaring activity in the
high-energy gamma-ray band (HE, 0.5 MeV ≤ � ≤ 100 GeV) was reported by the Fermi-LAT [7].
Quasi-simultaneous observations were carried out by the Siena observatory, the KVA telescope,
the Neil Gehrels Swift observatory, the XMM observatory, the NuSTAR telescope and the MAGIC
telescopes, while radio observations close in time to the MWL campaign were performed with the
Very Long Baseline Array (VLBA) Experiment. The observations in the very-high-energy (VHE,
100 GeV ≤ � ≤ 100 TeV) regime performed by MAGIC led to the first detection of the source
in this energy range [8]. Observations in X-rays indicate a higher-than-usual state with respect to
archival observations. Moreover, observations in the optical energy range performed by KVA in the
subsequent months showed a decreasing flux after the period of the flare. The high state reported
in all energy bands seemed to suggest a simple one-zone model for the modelling of its SED. In
this scenario scthe emission region is assumed to be a spherical blob filled with a population of
electrons distributed as a broken power-law, radiating energy via synchrotron emission and IC. The
SED was also modelled with a two-component model, which proved to be in a better agreement
with the data, as reported in [9].

2. HE and VHE gamma-ray observations

2.1 MAGIC observations and discovery

MAGIC is a stereoscopic system of two imaging Cherenkov telescopes located at an altitude
of 2200 m in the Roque de los Muchachos Observatory. The telescopes are 17 m in diameter
and the energy range goes from 50 GeV to 50 TeV. MAGIC telescopes performed observations of
TXS 1515–273 from MJD 58541 until MJD 58547. A total of ∼ 8 hours was collected at a high
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zenith angle, ranging from 55◦ to 62◦, under different moonlight illumination levels. For a more
detailed discussion on the MAGIC performance under moonlight the reader is addressed to [10].

The analysis of the data was performed with the standard tool for the MAGIC analysis, MARS
[11]. We optimised the analysis procedure to take into account different levels of night sky
background. The standard variable \2, which is defined as the squared angular distance of the
reconstructed shower direction with respect to the source location in the camera, was used to look
for any significant VHE gamma-ray excess with respect to background. The observations carried
out during the flaring period led to a significant detection with a statistical significance of 7.6 f
in the VHE range. The statistical significance is estimated using the Li & Ma formula reported in
[12].

The night-wise gamma-ray flux was derived for energies above 400 GeV. This energy threshold
was employed to allow for a proper flux estimation for each night while still taking into account the
observational conditions. The resulting light curve is shown in the top panel of Figure 3.

The data acquired during all the nights were combined to evaluate the overall spectrum, since
the acquired signal was not strong enough to evaluate the spectrum for each night individually.
The resulting spectrum was fitted with a power-law function. In order to reconstruct the intrinsic
spectrum of the source, the observed spectrum was unfolded by the energy dispersion using the
Bertero method [13] and then corrected for the extragalactic background light (EBL) absorption by
adopting the Domínguez model [14].

The MAGIC spectrum obtained after the unfolding and the EBL correction between 200 GeV
and 900 GeV is soft and is well-described by a simple power-law model

3#

3�
= #0

(
�

�0

)Γ
(1)

with photon index Γ = 3.11 ± 0.32stat, decorrelation energy �0 = 546GeV and normalization
constant #0 = (1.76 ± 0.28stat) × 10−11 TeV−1 · cm−2 · s−1. The unfolded spectrum is shown in
Figure 1, right panel, where blue stars represent the observed spectrumand red circles the deabsorbed
spectrum. The red solid line represents the best-fit power-law and the shaded area represents the
systematic uncertainties of the analysis. The soft spectrum in the VHE range suggests that the
high-energy bump in the SED is likely to be peaking at GeV energies.

2.2 Fermi-LAT data analysis

The Large Area Telescope (LAT) instrument onboard the Fermi Gamma-Ray Space Telescope
satellite is a pair-conversion telescope with a precision converter-tracker and calorimeter that detects
gamma rays from tens of MeV to hundreds of GeV.

Data from TXS 1515–273 were selected in a time window in temporal coincidence with the
MAGIC observations. Events in a 12◦ region of interest (ROI) centered on the nominal position of
the source and reconstructed energy in the 300 MeV – 500 GeV range were selected. The cuts on
the quality and the zenith distance were chosen following the recommendations by the Fermi-LAT
collaboration1.

1Standard cuts on the quality were used, e.g. ’DATA_QUAL>0 && LAT_CONFIG==1’ , while a zenith distance < 90◦

was selected.
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Figure 1: Right: Differential energy spectrum of TXS 1515–273 measured by the Fermi-LAT from MJD
58541 to MJD 58545. Data represent measurements, the solid lines the best-fit power-law model and the
shaded area the statistical uncertainties of the analysis. Upper limits are shown as downward arrows. Left:
Differential energy spectrum of TXS 1515–273 measured by MAGIC (blue stars) and corrected for EBL
(red circles). The red solid line represents the best-fit power-law, while the red shaded area represents the
systematic uncertainties of the analysis.

We performed a binned likelihood analysis2 in a square region inscribed in the ROI selected.
Data were binned in energy adopting 8 bins/decade. Spectral parameters of all the point-like sources
in the ROI, which were detected within 5◦ from TXS 1515–273 with test statistic (TS) greater than
10, were fit in the model. The spectra of the diffuse components, both galactic and isotropic3, were
also fit. The parameters of all other sources were fixed to the published 4FGL values.

A first analysis was performed selecting a ∼ 4 month period around the flare, from MJD
58476 to MJD 58613. The daily binned light curve for this period is shown in Figure 2, with the
MAGIC observation days highlighted in red. The reference flux from the 4FGL catalog, equals to
1.40 × 10−9 ph cm-2 s-1 is shown as a grey dotted line, clearly indicating a higher than usual state
in the highlighted period.

The gamma-ray flux variability of the source in the HE band was more deeply investigated over
the flare period from MJD 58541 through MJD 58548. In this period, the source was detected with
TS equal to 116 which corresponds approximately to a significance of 10.8f. The gamma-ray light
curve, including both MAGIC and Fermi-LAT observations is shown in Figure 3.

As shown in the plot, TXS 1515–273 was found to be in a high state in the Fermi-LAT band
during MJD 58546. However MAGIC VHE observations were not available for this night due
to bad weather, as can be seen from the missing data point in the MAGIC light curve. For this
reason, we decided to reduce the Fermi-LAT time range to MJD 58541 – 58545 so that the high
flux observed on MJD 58546 would not influence the broadband SED, in order to have a smoother
connection between the HE and the VHE gamma-ray observations. The resulting Fermi-LAT
spectrum is reported in Figure 1, left panel. The spectrum is well described by a power-law model,

2The analysis of Fermi-LAT data was performed using Fermitools v1.2.1 and the P8R3_SOURCE_V2 instrument
response function.

3The galactic and isotropicmodels usedwere, respectively, gll_iem_v07 and the iso_P8R3_SOURCE_V2_v1models.
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Figure 2: Gamma-ray flux light curves of TXS 1515–273 measured with the Fermi-LAT over a 4 month
period around the flaring activity, daily binned. The red shaded area marks the period matching the MAGIC
observations. 95% C.L. upper limits are shown as downward arrows for each time bin where the TS value
for the source was found to be smaller than 9. The reference flux from the 4FGL catalog is shown as a grey
dotted line.
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Figure 3: VHE and HE gamma-ray flux light curves of TXS 1515–273 measured with MAGIC (top, blue
circles) and with the Fermi-LAT (bottom, orange stars) during the flaring activity, daily binned. 95%
confidence upper limits are indicated as downward arrows in VHE gamma rays where the flux is compatible
with zero as well as in the HE band for each time bin where the TS value for the source was found to be
smaller than 9. Grey vertical bands mark the MAGIC observations.
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whose spectral parameters are #0 = (20 ± 7) × 10−13 MeV−1 · cm−2 · s−1, Γ = 2.2 ± 0.3 and
5E>300 MeV = (4.5 ± 1.3) · 10−8cm−2s−1 GeV, with �0 = 2.3 GeV.

The spectral analysis in the time range MJD 59541 – 58548, including MJD 58546, was
performed for analysis purposes. The photon index did not show any significant change between
the considered time windows. Only an increase in the measured flux was observed, due to the high
state observed in MJD 58546.

3. X-ray variability

The observational campaign reported here had very good coverage in the X-ray energy band.
The source was observed in this energy band with the NuSTAR telescope, the XMM-Newton obser-
vatory and the Neil Gehrels Swift observatory. Details on the analysis in this energy band will be
found in [9]. Owing to the long exposure of XMM-Newton and NuSTAR, we studied in detail the
variability in the X-rays to constrain some of the parameters which we later used to model the SED.

Multiple flares were found in the light curves of NuSTAR and XMM-Newton. The flare profiles
were fit using an exponential function to estimate the variability time. The time scale of the variation
was found to be on the order of hours for both datasets. Such a short time scale is in agreement with
the fast variability already seen in many HSPs [15]. Moreover, the rise and decay time scales of each
flare are not significantly different. However, for both datasets the rise time of the high-energy light
curve appears to be shorter than the rise time of the low-energy light curve, which is in agreement
with a cooling dominated scenario [16].

Since the XMM-Newton and NuSTAR observations were separated by less than a day but not
overlapping, and rapid variations on the time scale of hours were detected, we decided to consider
the data in two separate epochs for the two observing periods in order to take into account the rapid
variability in the X-rays. Therefore, we divided the dataset into two epochs, one with XMM-Newton
and XMM-OM and the other withNuSTAR and Swift datasets in the X-rays and optical energy bands.

The shortest time scales found in the analysis of the flare profiles in the two epochs were
then used to constrain the size of the emission region '. The upper limit on ' was found to be
' ≤ (5.07 ± 0.92) × 105 cm for the XMM-Newton epoch and ' ≤ (2.73 ± 0.58) × 105 cm for the
NuSTAR epoch. We assumed the Doppler factor to be X = 20, which is a typical value for VHE
emitting BL Lacs.

Following the prescription described in [17] we also constrained the strength of the magnetic
field of the emission region. However, since the X-ray observations are quite close in time and it is
unlikely for the magnetic field strength to vary in such a short period, we combined the observations
of the two epochs to constrain the magnetic field. Assuming again X = 20, the resulting magnetic
field strength was found to be � = (0.14 ± 0.02) G.

4. Summary

We report here on part of a MWL analysis performed on the BL Lac object TXS 1515–273.
It was found to be in a flaring state with respect to archival data in the X-ray and HE gamma-ray
band, with a consequent first detection at VHE gamma-ray by MAGIC. The very good coverage in
the X-rays, provided by XMM-Newton, NuSTAR and Swift-XRT, allowed for a detailed study of the
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variability of the source in this energy band. The estimated value of the magnetic field strength,
�, and the upper limits on the size of the emission region, ', were employed to model the SED of
TXS 1515–273 in the two epochs. Moreover, the excellent X-ray data also allowed for a study of
the synchrotron peak of the SED and the estimation of its frequency, classifying the source as HSP
as it was found to have async ∼ 1015 Hz.

In addition the source was observed in optical and radio bands as part of the Tuorla4 and
MOJAVE5 blazar monitoring programs. In both bands the source was little studied before these
observations, but has now (after the campaign presented here) been included in regular monitoring
of Tuorla6 in optical band and TELAMON (see Kadler et al. this volume) and TANAMI [18]
programs in radio band. The full analysis of the multiwavelength data set and the spectral energy
distribution modelling will be presented in [9].
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