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The MAGIC collaboration has developed a dedicated observational strategy to repoint rapidly
towards gamma-ray bursts (GRBs). In this contribution we present the information extracted
from the large sample of the GRBs observed by MAGIC from 2013 to 2019. None of these
GRBs were significantly detected, and this study aims to shed light on the reasons behind those
non-detections. The same strategy had led to the successful detection of two GRBs at Very
High Energies (VHE, E > 100 GeV). We describe the details of the MAGIC GRB observational
procedure and the general properties of each observedGRB. The lack of detection can be attributed
either to unfavourable conditions or GRB intrinsic properties, such as the magnetic field’s energy
density, the bulk Lorentz factor, or the emitting region’s size. For the presented sample of GRBs,
we show the methods used to obtain flux upper limits in the VHE range, and propose physical
implications of the non-detection of VHE emission. These results constitute an essential reference
point to study the broadband emission of GRBs, and for the Cherenkov telescope community to
organize future follow-ups of GRBs at VHE energies.
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1. Introduction

The possibility to detect the elusive component of VHE emission from GRBs has been one
of key scientific goals of Cherenkov telescopes for decades. The detection of such a component
from a gamma-ray burst would have indeed several scientific benefits (see e.g. [1]). A new window
would be opened on the GRB emission mechanisms. We could put constraints on the particle
acceleration mechanisms and the GRB jet composition as as well as the absorption of TeV photons
by the Extragalactic Background Light (EBL). The search for VHE GRBs has been one of the
most difficult challenges for all very high energy telescopes, given the cosmological nature and the
random occurrence of these sources in the sky. This research required the development of alert
systems and analysismethods adapted to non-standard observation conditions to avoid losing the few
opportunities for revealing the most interesting events ([2, 3]). The situation has evolved rapidly in
the past few years with the announcement by MAGIC ([4–7] ) and H.E.S.S. ([8, 9]) of the detection
of four GRBs at energies greater than one hundred GeV. They were followed, more recently, by
the announcement of the observation of other GRBs at very high energies, albeit with different
significance ([10, 11]). Having achieved the aim of revealing the first GRBs at TeV energies, the
research now focuses on identifying whether there are common characteristics in GRBs showing
emission components at the highest energies. This contribution describes the ongoing search for
GRB detection byMAGIC, and highlights the results on all the non detected GRBs after a significant
upgrade of the MAGIC automated alert system in the year 2013.

2. The MAGIC GRB follow-up procedure and the GRB sample

TheMAGIC telescopes were designed in order to perform fast follow-up observations of GRBs,
with the scope of detecting a VHE gamma-ray signal from these sources. First of all, the telescopes
have a very light carbon fiber structure, so that they can slew with a remarkable speed of 7 ° s−1. In
that way, MAGIC can perform a 180° rotation in less than 30 s. A second asset is the low energy
threshold. MAGIC can reach an energy threshold as low as 50 GeV at zenith, or even 30 GeV
using the so-called Sum-Trigger-II ([12]). This is particularly important given the strong VHE flux
absorption that is expected for such distant sources as GRBs. Finally, the high sensitivity at low
energies is crucial to detect transient emission in short timescales.

However, given the small field of view of 3.5°, which is typical for an IACT, MAGIC needs
to rely on external triggers in order to perform GRB follow-up. For this purpose, an automatic
alert system (AAS) was developed. Its main tasks are to receive GRB (and other transients) alerts
from the Gamma-ray Coordinates Network (GCN), validate them, and check if the target is visible
from the MAGIC site, according to predefined criteria. In the case of an observable alert, an
automatic procedure is in place, with no human-in-the-loop to reduce latency and possible issues as
much as possible. Following the procedure, the ongoing observation is stopped and the telescopes
start slewing to the GRB position. In the meanwhile, other subsystems (data acquisition, mirrors,
trigger system) are configured to start the new observation as soon as the telescopes reach the
target. The observation is performed in the wobble pointing mode, so that the standard IACT
analysis techniques can be adopted. Usually the observation of GRBs is carried on for 4 h. The
people in charge of following GRB observations together with the onsite operators, the so-called

2



P
o
S
(
I
C
R
C
2
0
2
1
)
8
2
0

MAGIC GRB Upper Limits Francesco Longo

Figure 1: Sky map of all the GRBs followed by MAGIC from 2013 to 2019

Burst Advocates (BAs), can decide to increase or decrease observation time according to additional
information coming from different channels.

Thanks to this automatic procedure, MAGIC could follow-up more than 130 GRBs starting
from 2005. Up to 2013, GRB observations resulting from the automatic procedure were carried out
with ON pointing mode. In this observation mode, an equal amount of OFF data must be taken for
background estimation. In 2013, the automatic procedure was upgraded so that wobble pointing
could be used during GRB follow-up observations. The other major update was related to the data
acquisition system, which is not stopped but only reconfigured during the automatic procedure,
hence reducing the number of possible failures.

For this reason, we focus this study on GRBs observed by MAGIC from the upgrade of the
automatic procedure up to the end of 2019. All the 50 GRBs observed in this time period are
shown in the skymap of Figure 1. In particular for this study we consider those GRBs without
any (hint of) detection in the VHE range. According to this criterion, GRB 160821B [10] and
GRB 190114C [5] are excluded from this study. Also GRB 190829A [9], detected by H.E.S.S.,
is not included here in order to have a dedicated study of this GRB. With these exclusions, the
number of GRBs followed-up by MAGIC in the above mentioned interval is 47. However, not all
of these GRBs were finally analyzed. Some of them were observed under bad weather conditions
(characterised by low atmospheric transmission, high humidity or strong winds), or just with one
telescope, or with a very high level of the night sky background light due to strong moonlight
(e.g. needing the usage of reduced high voltage or moon filters, see [13]) reducing drastically the
sensitivity of the instrument.

Therefore we focus on the GRBs meeting these quality criteria, which are 41. In particular,
the VHE data for GRBs observed at low zenith, with relatively small delay with respect to the GRB
onset and with a redshift estimate were compared to data available in other bands, especially in the
X-ray band, as described in Section 3.
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3. GRB Upper Limits calculation

Data analyses of GRBs have been performed by means of the MAGIC standard software pack-
age MARS [14]. The sample comprises of GRBs observed in different observational conditions
including also observations during moderate moonlight or not optimal weather conditions. There-
fore, dedicated event-selection criteria have been used during the analysis of these GRBs. Higher
image cleaning levels with respect to the standard ones have been used in case of observations in
presence of Moon as described in [13]. Corrections to estimated energy and effective collection
area have been derived in case of not optimal weather conditions thanks to the information provided
by the LIDAR facility[15, 16].

Given the lack of a significant signals, Upper Limits (ULs) on the deabsorbed photon flux
emitted in the VHE domain were derived. In MAGIC standard data analysis chain, ULs are calcu-
lated with the method of Rolke et al. [17] with a 95% Confidence Level (CL) and a total systematic
uncertainty of 30%. Several theoretical assumptions have been driving the UL calculation. The
deabsorbed gamma-ray differential photon spectrum was presumed to be described by a power law
behaviour 3#/3� = �−U. We assumed the values 1.6 and 2.2 for the photon index U because
such values reproduce the asymptotic behaviours expected in the SSC spectrum when the peak of
the emission is found to be below or above the GeV-TeV band. A confirmation of the validity of
this approach is found also from the best fit spectral parameters calculated from the observations
of GRB180720B [8] and GRB190114C [6] detected in the VHE domain. For the estimation of
the EBL absorption two different models have been adopted: Franceschini et al. (2018) [18], and
Gilmore et al. (2012) [19]. For the GRBs with unknown redshift a value of I = 2 has been assumed
for long GRBs and I = 0.5 for short GRBs. Indeed, these are the current median redshift values of
the Swift long and short GRB population [20].

For a subsample of GRBs showing promising features for the VHE band and a good X-ray
coverage contemporaneous to the MAGIC observational window, we provided a comparison be-
tween the estimated MAGIC ULs and the soft X-ray flux. The current GRB detections in the VHE
domain have shown to have an intimate connection with the soft X-ray band emission in terms of
emitted power and responsible radiation mechanisms. GRBs with known redshift z < 2 were first
selected. Then, the MAGIC ULs on the intrinsic flux have been estimated only for the time intervals
and the energetic ranges which assure that the total systematic uncertainty of the computed UL is
within 30%. We considered several different values of the low energy edge of the flux-integration
window �<8=, and we compared the corresponding effective area in order to assure that condition
on the total systematic uncertainty was preserved. We choose the minimum value of �<8= for
which the estimated effective area varied less than 30% when shifting the low energy edge of the
flux-integration window by a factor ± 15%. The upper energy edge �<0G was fixed to 1.5 TeV
in the rest frame. This value is chosen considering that the highest photon energies observed by
MAGIC from GRB 190114C are ∼ 1TeV (observer frame, corresponding to ∼ 1.5TeV in the rest
frame).

Some GRBs in the sample were also observed in the medium-high zenithal range (Zd>40).
When including these data for GRBs with z > 1 (which constitute the majority of our sample), the
extremely steep observed spectrum due to the high EBL absorption does not allow to fullfill the
condition on the systematic uncertainty. If the observations were performed with long delay with
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respect to the GRB trigger time, we decided to exclude this time interval from the UL calculation.
We include only the low-medium zenithal angle observations which assure that the total systematic
uncertainty of the resulting ULs were below 30%. As a result, a set of four ULs were derived
following the assumptions on the assumed deabsorbed photon spectrum and on the chosen EBL
models.

4. Upper Limits implications

The derived VHE ULs of the most intriguing events, including also the collection of simulta-
neous X-ray data, are useful to draw conclusions on the properties of the VHE emission component.
If the drived ULs are found at the same level as the contemporanous X-ray flux, this indicates a
VHE energy budget similar to the one in X-rays. Moreover, combined multi-wavelength afterglow
observations can be useful to constrain the unknown properties of the external forward shock sce-
nario. It is possible to investigate the amount of the amplification of the magnetic field and the
portion of energy given to the accelerated particles, or the density and the properties of the ambient
medium surrounding the GRB explosion. The most credible radiation mechanisms, namely the
synchrotron and synchrotron-self Compton (SSC) emission can also be tested. Further information
on the performed studies will be found in the upcoming publication.
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