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Ground-based W-ray observatories, such as theVERITAS array of imaging atmospheric Cherenkov
telescopes, provide insight into very-high-energy (VHE, E > 100 GeV) astrophysical transient
events. Examples include the evaporation of primordial black holes, gamma-ray bursts and flaring
blazars. Identifying such events with a serendipitous location and time of occurrence is difficult.
Thus, employing a robust search method becomes crucial. An implementation of a transient
detection method based on deep-learning techniques for VERITAS will be presented. This data-
driven approach significantly reduces the dependency on the characterization of the instrument
response and the modelling of the expected transient signal. The response of the instrument is
affected by various factors, such as the elevation of the source and the night sky background. The
study of these effects allows enhancing the deep learning method with additional parameters to
infer their influences on the data. This improves the performance and stability for a wide range of
observational conditions. We illustrate our method for an historic flare of the blazar BL Lac that
was detected by VERITAS in October 2016. We find a promising performance for the detection
of such a flare in timescales of minutes that compares well with the VERITAS standard analysis.
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1. Introduction

The detection of astrophysical transient events at very-high energies provides insight into
different fundamental phenomena. These include previously detected transient phenomena such
as gamma-ray bursts [1] or flaring blazars [2] and hypothesized transient phenomena such as the
evaporation of primordial black holes [3]. The Very Energetic Radiation Imaging Telescope Array
System (VERITAS) is an array of four imaging atmospheric Cherenkov telescopes (IACTs) located
at the Fred Lawrence Whipple Observatory in southern Arizona (31 40N, 110 57W, 1.3 km a.s.l.)
and is sensitive to sources of very-high-energy (VHE) photons above 100GeV with a strength of
1%Crab Units (C.U.) in ∼ 25 h [4]. VERITAS can detect VHE astrophysical transient sources
within its field of view (FoV) of diameter of 3.5◦ [5].

IACTs detect an inevitable rate of background events, which pass the nominal selection cuts.
The background includes W-like cosmic-ray showers, electrons, positrons, and, to a lesser extent,
diffuse W rays. An astrophysical source may cause an enhanced event rate that over this background
rate. Transient sources, cause a temporary increase of the observed event rates. These can appear at
any location in the FoV and at any time. The observed rates change depending on the observation
conditions. Thus, the changes in the instrument response need to be taken into account for a
robust method to identify transients in the data. In this work, the approach proposed for IACTs in
[6] is implemented for VERITAS. This deep-learning-based transient detection technique extracts
information about the changes of the event rates from the data themselves. Being fully data-driven,
it is insensitive to uncertainties on the modelling of the instrument and can operate across the entire
FoV. It represents the first application of this method to real IACT data.

2. Deep Learning Transient Detection

Machine learning techniques are widely used in astronomy [7]. Among them, deep learning
(DL) has proven its power in various astronomical applications (e.g., see [8]). It is based on deep
and wide artificial neural networks (ANNs) that are able to represent complexmodels [9]. Recurrent
Neural Networks (RNNs) are a type of ANNs that include cyclic connections that are especially
suited to work with sequential data, such as time series. We use the framework presented in [6]
that can be decomposed into a pair of encoder and decoder stages. As input, it takes a total of
gRNN = genc + gdec time steps. At each step, event counts #evt in [ energy bins are given as inputs to
the network. The genc steps of the encoder represent the background to a possible transient signal.
Subsequently, the signal is searched for in the ensuing gdec decoder steps. Each time step of the
RNN consists of a long short-term memory (LSTM) unit [10], comprised of a layer of 64 hidden
units. The RNN is trained with sequences of time series which do not contain any signals (either in
the encoder or in the decoder intervals). It thus learns to predict the expected background counts
�(gdec, [). If a transient signal is present as part of the decoder interval, the total observed counts
((gdec, [) are potentially increased. In this work, we use a different test statistic (TS) than the one
used for [6], who assumed that the inputs to the network followed Poissonian statistics. We instead
define our TS as

TS([) = ((gdec, [) − �(gdec, [)√
|�(gdec, [) | + 1

. (1)
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The one in the denominator is added to avoid numerical division by zero. The TS is independently
computed for the event counts in each energy bin. As the training data consists exclusively of
background sequences, it can be used to map TS values into a ?-value for detection. We define the
combined TS as the average of | log(?) | over all features and map it to a combined ?-value itself.

3. Data Selection and Preparation

This work utilizes VERITAS data recorded from 2012 to 2020. To learn the changes in
the background rates, a dataset that does not include uncontrolled systematic effects is required.
Possible systematics include hardware issues or the effects of bad weather, e.g., by clouds in the
field of view. As these result in a drop of the event rates, they potentially degrade the reliability of
a search for transients.

For the generation of the training dataset, we apply a selection on data-taking runs, based on
existing data quality monitoring results and basic filters. We consider data that was taken while
operating the full four-telescope array at zenith angles below 45◦ with nominal high voltage settings
and without recorded hardware issues. Manual data quality checks for a large dataset are time-
consuming and a possible source of inconsistency. To avoid this, we deploy an automatic pipeline,
that assesses the data quality after the initial selection. We investigate time series data, such as the
array trigger (L3) rate and temperature of the sky for systematic effects. Among these are spikes or
drops in the trigger rate e.g., due to a short flash of light in the camera, clouds in the FoV, and changes
correlated with the amount of night sky background (NSB). When such substantial systematics are
detected, time cuts are applied and the corresponding interval in the data is discarded. We validate
the remaining intervals for consistency with a constant trigger rate to indicate a stable performance
of VERITAS, where a final time cut may also be applied. Following this procedure, we obtain a
training dataset with an integrated ∼ 2, 730 hours of observations.

The data are processed using one of the standard VERITAS analysis packages [11]. We start
from a list of events following the standard event reconstruction, e.g., having reconstructed energies
and directions of arrival. For each run, we define our ROIs as non-overlapping circles, up to a
distance of 1.5◦ from the center of the FOV. See Figure 1. We choose a radius for the ROIs of
0.25◦. This conservatively covers the point spread function of VERITAS (uncertainty on event
localisation), over our chosen event parameter range. Bright stars and known VHE W-ray sources in
the FoV are masked with exclusion regions. Events coming from these directions are not considered
for the analysis. The observations are binned into time steps of 30 s intervals. Time cuts that are
determined by the automatic quality assessment are applied. If more than 10% of a ROI or a time
step are masked, they are removed completely. Otherwise we correct the measured events for the
expected missing fraction, assuming uniform distributions within each ROI. In each of the ROIs
and time steps, the count of events is calculated in three energy bins, 100 GeV to 330 GeV, 330 GeV
to 1 TeV, and 1 TeV to 100 TeV.

For W-hadron separation (classification of events as non-W-ray background), boosted decision
trees (BDTs) are utilized [12]. These assign a score between −1 and 1 to each event, which indicates
how "W-like" it appears. Depending on the zenith and energy bin, events with BDT ≥ 0.34 to
BDT ≥ 0.71 are selected in the standard VERITAS analysis. In this work, we deploy two different
counting schemes to obtain the number of events #evt per bin. In the first approach, we do not
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Figure 1: Example for the definition of ROIs in the VERITAS FoV. Left: The initial ROIs, shown in blue,
are filling the inner 1.5◦ relative to the center of the camera. The red circles indicate the defined exclusion
regions due to bright stars or known W-ray sources. The numbers in each ROI, are the fraction of area
excluded. Right: ROIs that overlap by more than 10% with an exclusion region are discarded. The small grey
dots indicate the origin of the W-like events. Events that fall into a surviving ROI are kept for the analysis.

apply the cut on the BDT-score, which was optimized for the traditional analysis. Instead, only a
loose BDT-score ≥ −0.5 cut is used to remove the bulk of events with the highest probability of
being background. We calculate a weighted sum of the remaining events. The event weights are the
BDT-scores remapped linearly between 0, corresponding to BDT = −0.5, and 1, corresponding to
BDT = 1. In the following we refer to it as weighted counting scheme. For the second approach, we
only count the number of events that pass the traditional W-hadron cuts (without applying weights).
Both approaches are utilized together, resulting in two count-metrics for each energy bin. We
therefore have a total of six inputs for each time step gRNN, which are mapped to six corresponding
test statistics (that are combined into a final TS, as described above).

The training and calibration of the TS requires that the training data does not include transient
signals. Thus, for generation of the training dataset, we shuffle the timestamps and the polar
angles in camera coordinates (assuming radial symmetry of the camera acceptance) of each event.
Exclusion regions and time cuts are preserved as part of the shuffling process.

4. Auxiliary Parameters and Meta Bins

VERITASoperates under awide range of observation conditions, which affects the performance
of the instrument. Our DL data-driven approach learns to predict the different background rates
from the training dataset. Auxiliary parameters (in addition to event counts) are used to inform
the RNN about potential systematics. We investigated parameters such as the L3 rate, the NSB
level, the azimuth, the secant of the zenith angle sec(\), the reference observation time ref_time,
the offset of the ROI compared to the center of the camera, and the average number of images
per event (multiplicity). An overview of the auxiliary parameters is provided in Table 1. The
conclusions from our study are the following: − The azimuth and sec(\) effectively account for
the difference in rates due to the pointing of the instrument. − The reference time is crucial to
characterize performance changes due to upgrades and aging effects (see also [13]). − The offset

4



P
o
S
(
I
C
R
C
2
0
2
1
)
8
2
2

Deep Learning Transient Detection with VERITAS Konstantin Pfrang

distance accounts for the difference in the radial acceptance. − Finally, the multiplicity in the
different energy bins contributes to identifying differences in the energy threshold that affects the
rate of low-energy events.

Table 1: Auxiliary parameters and meta bins for prediction of the background counts.

Parameter Description Used Meta bins

l3_mean Mean L3 trigger rate during time step No –
nsb_level Mean charge in camera indicating NSB No –
azimuth Azimuth of pointing position Yes North, South

sec(\) secant of the pointing zenith angle Yes
[1.0, 1,08), [1.08, 1.16),
[1.16, 1.24), [1.24, 1.4)

ref_time Time after August 1, 2012 in years Yes 2012-13, 2013-14, 2014-20

offset Distance of ROI to camera center Yes
6 bins, maximum 10% dif-
ference in radial acceptance

multiplicity([)
Average number of images at each time
step and energy bin

Yes –

As the expected background counts change, the interpretation of the TS can be adjusted. We
introduce meta bins to split the observations into chunks in which the observed background rates
are mostly stable. The study to determine the auxiliary parameters revealed that the most critical
parameters are the azimuth, sec(\), ref_time, and the offset. In total, we define 144 bins that are
summarized in Table 1.

5. Detection of BL Lac Flare

In its low state, the blazar BL Lac is not detectable in VERITAS over the timescales investigated
in this work (few minutes). However, in the past it proved to be a strong transient source, exhibiting
flaring periods. We investigate the BL Lac flare which occurred during October 2016 that reached
a flux of ∼ 1.8 C.U. above 200 GeV in the 4-minute-binned VERITAS light curve [2]. In this work,
we consider the 30 minute run that corresponds to the highest flux in the 30-minute-binned light
curve (see Figure 1 of [2]). We investigate the potential to detect such a flare with the DL transient
detection method.

The decoder steps, gdec, in which the signal is searched are filled with data obtained during the
flaring period. The DL transient method requires inputs for the encoder steps, genc, that represent
the background event rates. As the source is in the flaring state, we generate the encoder counts
by sampling from shuffled BL Lac observations during a low state, taken under similar observing
conditions. Generally, the padding for the encoder steps can also be extracted directly from the
training dataset, within the same meta bins. The light curves for both counting schemes are shown
in Figure 2.
We iteratively increase the number of decoder steps from 1 to 60, investigating the change in
detection significance as a function of the observation time Cobs of the flare. The results are shown
as the blue curves in Figure 3. In this study, the padding of the encoder samples is repeated 1000
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Figure 2: Number of events #evt as function of the time Cobs in the generated light curve of BL Lac in three
energy bins. The transition between the encoder and the decoder interval is at Cobs = 0. The solid blue curves
represent the counts obtained from the weighted sum after the loose BDT cut. The dashed black lines are
the counts of events after the W-hadron separation. The encoder steps are sampled from a shuffled low state
dataset and the decoder shows the counts during the flare.

times in order to derive the corresponding uncertainties (95% containment). On the left graph, we
investigate the individual contributions of the 6 input features to the combined significance. One
may observe that the significance for the two different counting metrics are comparable. Overall
the W-like counts perform slightly better on longer timescales. This reflects the higher signal to
noise ratio, as a larger fraction of the background is discarded. For short timescales and at highest
energies, the weighted counting metric is slightly more informative for the network, given that this
regime is dominated by statistical uncertainties.

The TS is calculated and mapped to p-values for each of the six input counts independently.
This allows our method to also perform well in cases where only a a subset of the features becomes
particularly important. For example a very hard source spectrum could lead to a large enhancement
of the W-ray rate in the highest energy bin. As a very low background rate is expected in this case,
the related significance would be comparably higher. On the right side of Figure 3, we compare the
combined significance against the results obtained for E > 100 GeV with the VERITAS standard
analysis that uses equation 17 of [14]. We use the reflected region background method [15].
For this, off regions with the same size as the target region are defined on a circle around the
camera center. The background is contemporaneously determined from the number of W-like events
arriving from these regions. The background estimation for the RNN is based on the encoder steps
of one ROI, in an area corresponding to a single off region. The significance obtained with our
method is compatible with the results of the standard analysis throughout most of the run. For short
timescales, the reflected region method is limited by low background statistics. On the other hand,
the DL method predicts the counts based on previous observations, and so is more robust. Thus,
our approach has the potential to outperform the standard method on short time scales. This can be
critical when dealing with transient signals that might have rapid variability or short timescales.

We also show for illustration results for the standard VERITAS analysis using six off regions.
A higher number of off regions lead to better estimation of the background, and correspondingly to
higher detection significance. In general, the definition of off regions in the FoV can be challenging
for geometrical reasons or the presence of W-ray sources. Thus, this method is often used for
detailed offline analyses instead for blind searches across the entire FoV. In future studies, we

6



P
o
S
(
I
C
R
C
2
0
2
1
)
8
2
2

Deep Learning Transient Detection with VERITAS Konstantin Pfrang

Preliminary

0 5 10 15 20 25 30
tobs [min]

0

5

10

15

20

25

30

Si
gn

ifi
ca

nc
e

weighted e0
weighted e1
weighted e2
combined

-like e0
-like e1
-like e2

95% cont.

Preliminary

0 5 10 15 20 25 30
tobs [min]

0

5

10

15

20

25

30

Si
gn

ifi
ca

nc
e

combined (this work)
95% cont. (this work)
refl. region 1 off
refl. region 6 off

Figure 3: Significance of detection as function of the observation time of the flare Cobs. The calculation is
repeated 1000 times while resampling the encoder steps. We show the medium and the 95% containment
interval in blue. The left graph shows the individual contribution to the significance of all 6 parameters.
Solid lines represent the weighted counts after the loose BDT cuts and the dashed are counts of W-like events.
The individual colors show the three energy bins. The black reference curves in the right are derived from the
VERITAS standard analysis above 100 GeV using the reflected region background with 1 and 6 off regions
respectively.

will investigate alternative training schemes for our RNN, which might take advantage of larger
background estimation areas. However, we also note that on short timescales, even given the
addition of off regions, the DL approach performs slightly better in comparison.

6. Summary

In this study we present the first implementation of a deep learning based method to detect
transient sources with VERITAS. We developed a pipeline to perform an automatic data quality
assessment and convert the event lists of the standard analysis to the inputs. The required auxiliary
parameters and meta bins were determined by studying their effects on the observed background
rates. As part of the anomaly detection approach presented in this work, the network learns to
predict the expected background rates. A transient signal can be detected as a divergence from
these predictions. We present a preliminary choice of selected inputs to such a network.

We illustrate our methodology on an historical flare of the blazar BL Lac, which was observed
during October 2016. The generated time series correspond to a scenario of a possible follow-
up observation. Overall the results are compatible with the significance achieved by traditional
detectionmethods, considering a single reflected background region. The results for short timescales
are promising, which can be critical for the fast detection of transient signals.
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