

PROCEEDINGS OF SCIENCE ONLINE ICRC 2021

Multi-messenger characterization of Mrk501 during historically low X-ray and gamma-ray activity

L. Heckmann,^{*a*,*} D. Paneque,^{*a*} S. Gasparyan,^{*b*} M. Cerruti,^{*c*} N. Sahakyan^{*b*} and A. Arbet-Engels^{*d*} on behalf of the Multi-wavelength collaborators and the MAGIC and *Fermi*-LAT Collaboration[†]

^aMax-Planck-Institut für Physik, D-80805 München, Germany

^bICRANet-Armenia, Marshall Baghramian Avenue 24a, Yerevan 0019, Armenia

^c Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona, Spain

^dETH Zürich, CH-8093 Zürich, Switzerland

E-mail: heckmann@mpp.mpg.de

Blazars, together with other active galactic nuclei, are the most luminous persistent sources in our universe; and therefore a prime candidate for very-high-energy (>0.2 TeV, VHE) gamma-ray observations. For the two MAGIC telescopes, the Mrk501 galaxy is among the brightest observed blazars due to its proximity.

We report a multi-wavelength and multi-messenger study of Mrk501 with data from 2017 to 2020, when Mrk501 showed a VHE flux typically below 10% that of the Crab Nebula. During this time, we performed three long observations with NuSTAR, which characterized the hard X-ray emission during three different low-activity flux levels. This Mrk501 dataset provided the unprecedented opportunity to study multi-wavelength variability and correlations with sensitive instruments during historically low X-ray and VHE gamma-ray emission (below 5% of the Crab Nebula flux in the VHE range), which could be considered as the baseline emission of Mrk501. We complemented the broadband spectral energy distributions (SED) of the identified historically low X-ray and VHE gamma-ray flux with data published by IceCube, in order to evaluate the potential existence of a hadronic component that is stable (or slowly variable), and less visible than the leptonic component that may dominate the emission during typical and flaring activity. In this contribution, we will also describe the evolution of the broadband SED comparing different theoretical scenarios.

37th International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021 Online – Berlin, Germany

*Presenter

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). 2

5

6

7

8

9

10

11

12

[†]a complete list of the MAGIC Collaboration authors can be found at the end of the proceedings

Due to its brightness Mrk501 can be studied in detail during both flaring and quiescent activity. To further improve our understanding of its behavior regular monitoring campaigns are organized each year including instruments ranging from radio to VHE. In this contribution, we present the multi-wavelength results of this monitoring campaign for a period of four years lasting from 2017 to 2020. The data set includes data from MAGIC, *Fermi*-LAT, *NuSTAR* and the *Neil Gehrals Swift* observatory alongside different optical R-band and radio results.

19

Both in the VHE as well as the X-ray energy range the source showed a historically low activity 20 from mid-2017 to mid-2019. This is quantified by a constant flux hypothesis that is successfully 21 applied to the MAGIC data of the identified low state period. An average flux of around 5% of 22 the Crab Nebula flux above 0.2 TeV (Crab unit) fits the flux state of this period while the typical 23 flux level of Mrk501 is around 30% that of the Crab unit [2]. In addition, the long-term X-ray 24 lightcurve displayed on the XRT monitoring webpage¹ [1] shows extremely low activity during this 25 time interval in comparison to the overall behavior since 2005. Furthermore, three long exposure 26 NuSTAR observations were conducted shortly before and during the low-state period. 27

28

This extensive data set is very well suited for investigating the multi-wavelength behavior around the low state including both variability and correlation studies alongside spectral studies. For the low state in particular a very detailed spectral evaluation is considered since it could be interpreted as the baseline emission of Mrk501. This baseline emission could be a stable and always present component of the blazar emission that is usually outshone by more variable and brighter components.

A very precise SED can be obtained by combining the monitoring data of this two year low activity data set with the NuSTAR observation conducted on the 20th of April 2018. We modeled the low-state SED using different physical scenarios such as standard one-zone synchrotron self Compton scenarios [see e.g., 3, 4] applied by using two independent frameworks: a modified naima [6] framework and the public jetset framework² [see 7–10]. Additionally, a standard hadronic scenario was investigated using the numerical code described in [11].

Moreover, the earlier two of the *NuSTAR* observations conducted around one and two months before the start of the low activity allow us to combine the multi-wavelength data with two additional comprehensive broadband SEDs. This allows us to investigate the evolution of the source before the low state. All three SEDs as well as earlier published data can be used to test our hypothesis of a stable baseline region with a more active zone dominating the blazar emission.

46

This first characterization of the low activity of Mrk501 suggests promising results. The baseline emission seems to be explicable both by standard leptonic as well as hadronic scenarios, which are compatible with the expected neutrino flux from ten years of IceCube data [5]. Furthermore, the hypothesis of this baseline emission being a constant component of the blazar emission holds under the first test. More detailed spectral studies together with variability and correlation analysis will be presented to further support the assumptions of this contribution. This could help to disentangle

¹https://www.swift.psu.edu/monitoring/source.php?source=Mrk501

²https://github.com/andreatramacere/jetset/tree/1.2.0rc7, dev branch

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

the complex behavior of not only Mrk501 but also a broader sample of blazars.

Acknowledgments

We acknowledge the support from the agencies and organizations listed here: https://magic.mpp.mpg.de/acknowledgments_ICRC2021

References

- [1] Stroh, Michael & Falcone, Abe. 2013, The Astrophysical Journal Supplement Series, 207
- [2] Abdo, A. A., Ackermann, M., Ajello, M., et al. 2011, The Astrophysical Journal, 727, 129
- [3] Ghisellini, G. & Maraschi, L. 1996, Astronomical Society of the Pacific Conference Series, 110,436
- [4] Tavecchio, F., Maraschi, L., & Ghisellini, G. 1998, The Astrophysical Journal, 509, 608
- [5] Aartsen, M. G., Ackermann, M., Adams, J., et al. 2020, Physical Review Letters, 124,366051103
- [6] Zabalza, V. 2015, 34th International Cosmic Ray Conference, 34, 922
- [7] Tramacere, A. 2020, JetSeT: Numerical modeling and SED fitting tool for relativistic jets
- [8] Tramacere, A., Massaro, E., & Taylor, A. M. 2011, The Astrophysical Journal, 739, 66
- [9] Tramacere, A., Giommi, P., Perri, M., et al. 2009, Astronomy Astrophysics, 501, 879
- [10] Massaro, E., Tramacere, A., Perri, M., et al. 2006, Astronomy Astrophysics, 448, 861
- [11] Cerruti, M., Zech, A., Boisson, C., et al. 2015, Monthly Notices of the Royal Astronomical Society, 448, 910

The MAGIC Collaboration

V. A. Acciari¹, S. Ansoldi^{2,41}, L. A. Antonelli³, A. Arbet Engels⁴, M. Artero⁵, K. Asano⁶, D. Baack⁷, A. Babic⁸, A. Baquero⁹, U. Bar-73 res de Almeida¹⁰, J. A. Barrio⁹, I. Batković¹¹, J. Becerra González¹, W. Bednarek¹², L. Bellizzi¹³, E. Bernardini¹⁴, M. Bernardos¹¹, 74 A. Berti¹⁵, J. Besenrieder¹⁵, W. Bhattacharyya¹⁴, C. Bigongiari³, A. Biland⁴, O. Blanch⁵, H. Bökenkamp⁷, G. Bonnoli¹⁶, Ž. Bošnjak⁸, 75 G. Busetto¹¹, R. Carosi¹⁷, G. Ceribella¹⁵, M. Cerruti¹⁸, Y. Chai¹⁵, A. Chilingarian¹⁹, S. Cikota⁸, S. M. Colak⁵, E. Colombo¹, J. L. Contreras⁹, J. Cortina²⁰, S. Covino³, G. D'Amico^{15,42}, V. D'Elia³, P. Da Vela^{17,43}, F. Dazzi³, A. De Angelis¹¹, B. De Lotto², 76 77 M. Delfino^{5,44}, J. Delgado^{5,44}, C. Delgado Mendez²⁰, D. Depaoli²¹, F. Di Pierro²¹, L. Di Venere²², E. Do Souto Espiñeira⁵, 78 D. Dominis Prester²³, A. Donini², D. Dorner²⁴, M. Doro¹¹, D. Elsaesser⁷, V. Fallah Ramazani^{25,45}, A. Fattorini⁷, M. V. Fonseca⁹, 79 L. Font²⁶, C. Fruck¹⁵, S. Fukami⁶, Y. Fukazawa²⁷, R. J. García López¹, M. Garczarczyk¹⁴, S. Gasparyan²⁸, M. Gaug²⁶, N. Giglietto²², 80 F. Giordano²², P. Gliwny¹², N. Godinović²⁹, J. G. Green³, D. Green¹⁵, D. Hadasch⁶, A. Hahn¹⁵, L. Heckmann¹⁵, J. Herrera¹, 81 J. Hoang^{9,46}, D. Hrupec³⁰, M. Hütten¹⁵, T. Inada⁶, K. Ishio¹², Y. Iwamura⁶, I. Jiménez Martínez²⁰, J. Jormanainen²⁵, L. Jouvin⁵, 82 M. Karjalainen¹, D. Kerszberg⁵, Y. Kobayashi⁶, H. Kubo³¹, J. Kushida³², A. Lamastra³, D. Lelas²⁹, F. Leone³, E. Lindfors²⁵, L. Linhoff⁷, S. Lombardi³, F. Longo^{2,47}, R. López-Coto¹¹, M. López-Moya⁹, A. López-Oramas¹, S. Loporchio²², B. Machado de 83 84 Oliveira Fraga¹⁰, C. Maggio²⁶, P. Majumdar³³, M. Makariev³⁴, M. Mallamaci¹¹, G. Maneva³⁴, M. Manganaro²³, K. Mannheim²⁴, 85 L. Maraschi³, M. Mariotti¹¹, M. Martínez⁵, D. Mazin^{6,15}, S. Menchiari¹³, S. Mender⁷, S. Mićanović²³, D. Miceli^{2,49}, T. Miener⁹, 86 J. M. Miranda¹³, R. Mirzoyan¹⁵, E. Molina¹⁸, A. Moralejo⁵, D. Morcuende⁹, V. Moreno²⁶, E. Moretti⁵, T. Nakamori³⁵, L. Nava³, 87

V. Neustroev³⁶, C. Nigro⁵, K. Nilsson²⁵, K. Nishijima³², K. Noda⁶, S. Nozaki³¹, Y. Ohtani⁶, T. Oka³¹, J. Otero-Santos¹, S. Paiano³,
M. Palatiello², D. Paneque¹⁵, R. Paoletti¹³, J. M. Paredes¹⁸, L. Pavletić²³, P. Peñil⁹, M. Persic^{2,50}, M. Pihet¹⁵, P. G. Prada Moroni¹⁷,
E. Prandini¹¹, C. Priyadarshi⁵, I. Puljak²⁹, W. Rhode⁷, M. Rib6¹⁸, J. Rico⁵, C. Righi³, A. Rugliancich¹⁷, N. Sahakyan²⁸, T. Saito⁶,
S. Sakurai⁶, K. Satalecka¹⁴, F. G. Saturni³, B. Schleicher²⁴, K. Schmidt⁷, T. Schweizer¹⁵, J. Sitarek¹², I. Šnidarić³⁷, D. Sobczynska¹²,
A. Spolon¹¹, A. Stamerra³, J. Strišković³⁰, D. Strom¹⁵, M. Strzys⁶, Y. Suda²⁷, T. Surić³⁷, M. Takahashi⁶, R. Takeishi⁶, F. Tavecchio³,
P. Temnikov³⁴, T. Terzić²³, M. Teshima^{15,6}, L. Tosti³⁸, S. Truzzi¹³, A. Tutone³, S. Ubach²⁶, J. van Scherpenberg¹⁵, G. Vanzo¹,
M. Vazquez Acosta¹, S. Ventura¹³, V. Verguilov³⁴, C. F. Vigorito²¹, V. Vitale³⁹, I. Vovk⁶, M. Will¹⁵, C. Wunderlich¹³, T. Yamamoto⁴⁰,
and D. Zarić²⁹

96

¹ Instituto de Astrofísica de Canarias and Dpto. de Astrofísica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain ² 97 Università di Udine and INFN Trieste, I-33100 Udine, Italy ³ National Institute for Astrophysics (INAF), I-00136 Rome, Italy ⁴ ETH 98 Zürich, CH-8093 Zürich, Switzerland ⁵ Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology 99 (BIST), E-08193 Bellaterra (Barcelona), Spain ⁶ Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University 100 of Tokyo, Kashiwa, 277-8582 Chiba, Japan ⁷ Technische Universität Dortmund, D-44221 Dortmund, Germany ⁸ Croatian MAGIC 101 Group: University of Zagreb, Faculty of Electrical Engineering and Computing (FER), 10000 Zagreb, Croatia ⁹ IPARCOS Institute and 102 EMFTEL Department, Universidad Complutense de Madrid, E-28040 Madrid, Spain¹⁰ Centro Brasileiro de Pesquisas Físicas (CBPF), 103 22290-180 URCA, Rio de Janeiro (RJ), Brazil¹¹ Università di Padova and INFN, I-35131 Padova, Italy¹² University of Lodz, Faculty of 104 Physics and Applied Informatics, Department of Astrophysics, 90-236 Lodz, Poland 13 Università di Siena and INFN Pisa, I-53100 Siena, 105 Italy 14 Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany 15 Max-Planck-Institut für Physik, D-80805 München, 106 Germany 16 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain 17 Università di Pisa and 107 INFN Pisa, I-56126 Pisa, Italy 18 Universitat de Barcelona, ICCUB, IEEC-UB, E-08028 Barcelona, Spain 19 Armenian MAGIC Group: 108 A. Alikhanyan National Science Laboratory, 0036 Yerevan, Armenia 20 Centro de Investigaciones Energéticas, Medioambientales y 109 Tecnológicas, E-28040 Madrid, Spain²¹ INFN MAGIC Group: INFN Sezione di Torino and Università degli Studi di Torino, I-10125 110 Torino, Italy²² INFN MAGIC Group: INFN Sezione di Bari and Dipartimento Interateneo di Fisica dell'Università e del Politecnico di 111 Bari, I-70125 Bari, Italy 23 Croatian MAGIC Group: University of Rijeka, Department of Physics, 51000 Rijeka, Croatia 24 Universität 112 Würzburg, D-97074 Würzburg, Germany 25 Finnish MAGIC Group: Finnish Centre for Astronomy with ESO, University of Turku, 113 FI-20014 Turku, Finland ²⁶ Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain 114 ²⁷ Japanese MAGIC Group: Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526 115 Hiroshima, Japan 28 Armenian MAGIC Group: ICRANet-Armenia at NAS RA, 0019 Yerevan, Armenia 29 Croatian MAGIC Group: 116 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), 21000 Split, Croatia 117 ³⁰ Croatian MAGIC Group: Josip Juraj Strossmayer University of Osijek, Department of Physics, 31000 Osijek, Croatia ³¹ Japanese 118 MAGIC Group: Department of Physics, Kyoto University, 606-8502 Kyoto, Japan 32 Japanese MAGIC Group: Department of Physics, 119 Tokai University, Hiratsuka, 259-1292 Kanagawa, Japan ³³ Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Salt Lake, 120 Sector-1, Kolkata 700064, India ³⁴ Inst. for Nucl. Research and Nucl. Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, 121 Bulgaria 35 Japanese MAGIC Group: Department of Physics, Yamagata University, Yamagata 990-8560, Japan 36 Finnish MAGIC 122 Group: Astronomy Research Unit, University of Oulu, FI-90014 Oulu, Finland 37 Croatian MAGIC Group: Ruder Bošković Institute, 123 10000 Zagreb, Croatia ³⁸ INFN MAGIC Group: INFN Sezione di Perugia, I-06123 Perugia, Italy ³⁹ INFN MAGIC Group: INFN 124 Roma Tor Vergata, I-00133 Roma, Italy 40 Japanese MAGIC Group: Department of Physics, Konan University, Kobe, Hyogo 658-125 8501, Japan ⁴¹ also at International Center for Relativistic Astrophysics (ICRA), Rome, Italy ⁴² now at Department for Physics and 126 Technology, University of Bergen, NO-5020, Norway 43 now at University of Innsbruck 44 also at Port d'Informació Científica (PIC), 127 E-08193 Bellaterra (Barcelona), Spain⁴⁵ now at Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Astronomisches Institut 128 (AIRUB), 44801 Bochum, Germany ⁴⁶ now at Department of Astronomy, University of California Berkeley, Berkeley CA 94720⁴⁷ 129 also at Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy 49 now at Laboratoire d'Annecy de Physique des Particules 130 (LAPP), CNRS-IN2P3, 74941 Annecy Cedex, France ⁵⁰ also at INAF Trieste and Dept. of Physics and Astronomy, University of 131 Bologna, Bologna, Italy 132