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role in the evolution of our Galaxy. Gamma-ray emission produced by cosmic rays is a direct
probe of cosmic rays and their accelerators. As a key sub-array of the Large High Altitude Air
Shower Observatory (LHAASO), KM2A is the most sensitive gamma-ray detector at ultra-high
energy (UHE, >100 TeV) band. Here, we report four of the brightest UHE sources measured by
LHAASO, LHAASO J1825-1326, LHAASO J1908+0621, LHAASO J2108+5157 and LHAASO
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respectively using the KM2A data collected from December 2019 to December 2020. The origin
of the UHE gamma-ray emission is also discussed taking into account the implications from
multi-wavelength observations.
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1. Introduction

Galactic cosmic rays (CRs) reach energies of at least a few petaelectronvolts ( PeV,1015eV), the
knee in the particle spectrum. This implies that our Galaxy contains PeV accelerators (PeVatrons).
Identification of the PeVatrons is a prime objective towards understanding of the origin of CRs. The
possible candidates include supernova remnants (SNRs) [1], Galactic Center [2], young massive
star clusters [3] and so on. The typical energy of gamma rays produced in the interaction of CRs
with ambient medium is about 10% of the parent CR energy. A decisive indication of acceleration
of PeV protons is the observations of ultra-high energy (UHE; E≥0.1 PeV) gamma-rays.

The Large High Altitude Air Shower Observatory (LHAASO) is a new-generation complex
EAS array being built at 4410 m a.s.l. near Daocheng, in the Sichuan province of China [4]. With
large field of view and high duty cycle, LHAASO can survey a large fraction of the sky in the
range of declination from -15◦ to 75◦. The expected sensitivity of LHAASO above 30 TeV is at
least 10 times higher than current experiments. Therefore, LHAASO is a suitable tool to detect
and study PeVatrons within our Galaxy. Recently, LHAASO reported the detection of 12 UHE
gamma-ray sources with a statistical significance greater than seven standard deviations [5]. The
photons detected by LHAASO far beyond 100 TeV prove the existence of Galactic PeVatrons. It is
likely that the Milky Way is full of these particle accelerators.

This paper mainly introduces three of the UHE gamma-ray sources detected by LHAASO as
reported in [5] and another one reported in [6]. It is organized as following. In Section 2, the design
and performance of LHAASO detectors are introduced. Section 3 describes the analysis method.
In section 4, we report the results of the three sources.

2. The LHAASO Detectors Array

LHAASOmainly aims to very high energy gamma-ray astronomy and cosmic rayswith energies
in 1011−1018 eV [7]. It consists of three sub-arrays: the Square Kilometre Array (KM2A), theWater
CherenkovDetector Array (WCDA), and theWide-FieldAir Cherenkov TelescopeArray (WFCTA).
As the major array of LHAASO, KM2A contains 5195 electromagnetic particle detectors (EDs) and
1188 muon detectors (MDs), covering an area of 1.3 km2. Each ED consists of 4 plastic scintillation
tiles covered by a 0.5-cm-thick lead plate to convert the gamma rays to electron-positron pairs and
improve the angular resolution of the array. The EDs detect the electromagnetic particles in the
shower, which are used to reconstruct the primary direction, core location and energy. Each MD
includes a cylindrical water tank with a diameter of 6.8 m and a height of 1.2 m. The tank is buried
under 2.5 m of soil to shield against the high energy electrons/positrons and photons of the showers.
The MDs are used to detect the muon component of showers, which is used to discriminate between
gamma-ray and hadron induced showers.

Half of the KM2A array including 2365 EDs and 578 MDs has been put into operation since
December 2019. According to the observation of Crab Nebula, the detector performance has been
tested [8]. The core resolution ranges from 2−4 m and the angular resolution ranges from 0.2◦−0.3◦

for events at 100 TeV. The energy resolution is about 24% at 20 TeV and 13% at 100 TeV, for showers
with zenith angle less than 20◦. The KM2A half-array data set, collected from 27th December 2019
to 24th November 2020, were used in this analysis.
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3. Analysis Methods

The pipeline of KM2A data analysis presented in [8] is designed for surveying the whole sky
in the range of declination from -15◦ to 75◦ . The same analysis methods are directly adopted in
this work. The significances of sources are computed using a likelihood analysis given a specific
source model. The likelihood ratio test statistic (TS) is defined as:

TS = 2ln
Ls+b

Lb
(1)

where, Ls+b is the maximum likelihood of the alternative hypothesis ( source model + background)
and Lb is the maximum likelihood of the null hypothesis (background only). The spectral energy
distributions (SED) of sources are estimated with the forward-folding method described in [8]. The
SED of this source is assumed to follow a power-law spectrum dN/dE = φ0(E/20 TeV)−α. The
best-fit values of φ0 and α are obtained by the least-squares fitting method.

4. Results

In the following, the results of the significance maps and spectral fits for the four sources are
reported, respectively. The spectra are fitted with a log-parabola (LOG) function in the form of
[E/(10 TeV)]−a−blog[E/(10 TeV)] and a power-law function of E−Γ.

4.1 LHAASO J1825-1326

LHAASO J1825-1326 (Figure. 1) is detected at an 18.0σ level above 25 TeVwith an extension
of σ = 0.30◦±0.06◦. The source has a spectrum that is fit by a log-parabola with a = 0.92, b = 1.19
(AICLOG = 11.6) and a power-law with Γ = 3.36 (AICPL = 14.8). There are two energetic
pulsars, PSR J1826-1334 and PSR J1826-1256, located in the source region, which may be the
energy sources of the UHE emission. In the VHE gamma-ray regime, HESS detected an energy
dependent morphology which is consistent with the leptonic origin of the gamma-ray emission[9].
In the future, We will dedicate an analysis to LHAASO J1825-1326 and try to figure out the physical
origin.
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Figure 1: Spectral energy distributions and significance maps of LHAASO J2226+6057 and LHAASO
J1825-1326 [5].

4.2 LHAASO J1908+0621

LHAASO J1908+0621 is consistent with The MGRO J1908+06 which was discovered by the
MILAGRO collaboration [10] and later confirmed with the HESS atmospheric Cherenkov telescope
[11]. It spatially associated with a middle-aged supernova remnant (SNR) G40.5-0.5 [12] and an
energetic gamma-ray pulsar PSR J1907+0602 [13]. The age of G40.05-0.5 is estimated between 20
and 40 kyr and the distance is uncertain. The PSR J1907+0602 has a characteristic age of 19.5 kyr
and a spin-down luminosity of ∼ 3 × 1036ergs−1. The distance of PSR J1907+0602 was estimated
to be 3.2 kpc. The nature of MGRO J1908+06 remains unrevealed and a single accelerator cannot
explain the whole set of multiwavelength data.

The significance map around LHAASO J1908+0621 with Erec ≥ 25 TeV are shown in Figure
2. We use the two-dimensional Gaussian model template to study the morphology of the source.
The centroid of gamma-ray emissions with energies above 25 TeV is R.A. = 287.04◦ ± 0.03◦stat,
Dec. = 6.24◦ ± 0.04◦stat (J2000) and the extension is σ = 0.57◦ ± 0.03◦. Taking into account
the Gaussian extension of 0.57◦, the resulting differential flux can be fitted by a log-parabola for
a = 2.27, b = 0.46 and a power-law for Γ = 2.89. The Akaike Information Criterion (AIC) of
log-parabola and power-law are 15.1 and 30.1.

The gamma-ray spectral points with energies from gigaelectronvolt to several hundred ter-
aelectronvolts could be explained by accelerated electrons following a spectrum of N(E) ∝
N−1.75
e exp{−Ee/(800 TeV)}. Alternatively, the gamma-ray emission could be produced by protons

accelerated up to PeV colliding with the ambient dense gas. The spectrum of accelerated protons
is more complex which is a broken power law with an exponential cutoff, with indices 1.2 and 2.7
below and above 25 TeV and a cutoff energy of 1.3 PeV.
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Figure 2: Phenomenological fits to the gamma-ray observations of LHAASO J1908+0621, and previous
observations of potential counterparts [5].

4.3 LHAASO J2108+5157

LHAASO J2108+5157 is firstly discovered by LHAASO at approximately 9.5σ and 8.5σ
significance level in both energy bands of 25−100 TeV and >100 TeV, respectively [6]. This source
is not significantly favored as an extensive source with the angular extension smaller than the point-
spread function of KM2A. An upper limit on the extension of the source is calculated to be 0.26◦ at
95%confidence level (CL). Its spectrum from20TeV to 500TeV is characterized by a power-lawwith
index−2.83±0.18stat . No obvious counterparts were found in the region of LHAASO J2108+5157
at other wavelengths. It is correlated with themolecular cloud [MML2017]4607. The UHE gamma-
rays could be explained by interactions of protons with the ambient gas through the production and
decay of π0 mesons (As shown in Figure 3). The energy spectrum of protons follows a power-law
with an exponential cutoff: N(E) ∝ N−2

p exp{−Ep/(600 TeV)}. Other possible scenarios, such as
a PWN, can also be invoked to explain the KM2A observed gamma-rays. The primary electron
spectrum follows a power-law with an exponential cutoff: N(E) ∝ N−2.2

e exp{−Ee/(200 TeV)}.
Because of the absence of pulsar counterpart, the PWN scenario remains uncertain. So far, no
conclusion about the origin of its UHE emission can be achieved.
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Figure 3: The multiwavelength SEDs of LHAASO J2108+5157 with hadronic and leptonic modeling [6].
The red points and arrows are the LHAASO-KM2A observations. The blue triangles are the radio fluxes.
The grey points and blue arrows are the Fermi-LAT spectral points and upper limits.

4.4 LHAASO J2226+6057

LHAASO J2226+6057 (Figure. 1) is detected at an 18.0σ level above 25 TeV, exhibiting a
log-parabola spectral for a = 1.56, b = 0.88 (AICLOG = 12.3) and a power-law for Γ = 3.01
(AICPL = 24.4). The detected highest photon energies is 0.57 ± 0.19 PeV. The Source is spatially
associated with SNR G106.3+2.7 which is a comet-shaped radio source, with a brighter “head" and
an extended “tail” region. The “head" region also contains an off-center PWN in the north named
“Boomerang" powered by the pulsar PSR J2229+6114, whose characteristic age and luminosity are
10 kyr and 2.2× 1037ergs−1. The very-high-energy gamma-ray emission above 10 TeV observed by
ASγ is well correlated with a molecular cloud rather than with the pulsar PSR J2229+6114 [14].
In the future, We will dedicate an analysis to LHAASO J2226+6057 from 100 GeV to 1 PeV. This
will provide crucial information to disentangle the origin of the gamma ray emission observed.

5. Conclusions

LHAASO has observed 12 UHE gamma-ray sources. It will play an important role in the
identification of PeVatrons. Some simple discussion on the three most significantly detected
sources are made. We will make a deep analysis of these three sources in the future. A new UHE
gamma-ray source, LHAASO J2108+5157, is observed at an 8.5σ level above 100 TeV. No obvious
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counterparts have been found, deeper multiwavelength observations will help to shed new light on
this intriguing UHE source.
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