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1. Introduction

The Telescope Array (TA) experiment [1, 2] is a hybrid detector operating in Utah, USA. The
TA Surface Detector (TA SD) is an array of 507 stations covering an area of 680 km2 placed in a
square grid with 1.2 km spacing. Each SD station registers particles of extensive air showers (EAS)
at the ground level with two layers of 1.2 cm thick plastic scintillator. SD station is solar powered
and wirelessly connected to one of the three communication towers. The purpose of this Talk is to
present updated limits on the diffuse photon flux with energies greater than 1019 eV obtained using
novel neural-network classifier and the data of the 11 years observations of the TA SD.

The limits on the ultra-high-energy diffuse photon flux have been set in many independent
experiments, including Haverah Park, AGASA, Yakutsk, Pierre Auger and Telescope Array ob-
servatories [3–14], while no evidence for primary photons found at present. The upper limit on
the photon flux from Southern and Northern hemisphere point sources is set by the Pierre Auger
Observatory [15] and TA [16]. Photon flux limits are used to constrain the parameters of top-down
models [17] and the properties of the astrophysical sources and their evolution in the scenario of
Greisen-Zatsepin-Kuzmin [18, 19] cut-off. Moreover, the results of the photon search severely con-
strain the parameters of Lorentz invariance violation at the Planck scale [20–24]. Finally, photons
with energies above ∼ 1018 eV might be responsible for ultra-high-energy cosmic ray events corre-
lated with BL Lac type objects on the angular scale significantly smaller than the expected deflection
of protons and nuclei in cosmic magnetic fields and thus suggesting neutral primaries [25, 26] (see
Ref. [27] for a particular mechanism).

2. Data set and simulations

We use Telescope Array surface detector data set covering eleven years of observation from
2008-05-11 to 2019-05-10. Surface detector has been collecting data for more than 95% of time
during that period [28].

The structure of the extensive air showers induced by the primary photons is significantly
different from the structure of the hadron-induced events (see e.g. [29] for a review). The photon-
induced events develop deeper in the atmosphere and contain less muons. As a consequence they
have larger shower front curvature, longer duration of the signal at scintillator and difference in
multiple other observables [13]. The 1.2 cm thick plastic scintillator responds to both muon and
electromagnetic components of the shower and therefore TA SD is sensitive to showers, induced by
primary photons (see Ref. [30] for discussion).

The results of this Talk employ Monte-Carlo simulations reproducing the observations at the
TA SD. The proton induced simulated shower set is used as a background while the photon set
is used as a signal. We produce simulated events by CORSIKA [31] with EGS4 [32] model for
electromagnetic interactions, PRESHOWER code [33] for interactions of photons in geomagnetic
field, QGSJET II-03 [34] and FLUKA [35] for high and low energy hadronic interactions. The
showers are simulated with thinning and the dethinning procedure is used to recover small scale
structure of the shower fluctuations [36].

Detector response is accounted for by using look-up tables simulated with the GEANT4 [37].
Each simulated event uses real-time array configuration and detector calibration information. The
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Figure 1: Distribution of the ξ parameter for data (black) compared with proton and photon-induced
Monte-Carlo events (red - protons, green - photons).

format of the Monte-Carlo (MC) events is the same as the format of the real data and therefore all
the analysis procedures are applied to both in the same way [36].

3. Reconstruction and event features

The reconstruction of each event is performed with a joint fit of the geometry and lateral
distribution function (LDF). The fit determines the Linsley shower front curvature parameter “a”
along with the arrival direction, core location and signal density at 800 meters S ≡ S800. The
reconstruction procedure is identical for the data and MC events.

For each real event “i” the energy of hypothetical photon primary E i
γ = Eγ(Si, θi, φi) is

estimated. E i
γ is the average energy of the primary photon, inducing the shower with the same

arrival direction and S. The look-up table for Eγ(S, θ, φ) is constructed using photon MC set.
The following cuts are applied to both data and MC events:

(a) Zenith angle cut: 0◦ < θ < 55◦;

(b) The number of detectors triggered is 7 or more;

(c) Shower core is inside the array boundary with the distance to the boundary larger than 1200
meters;

(d) Joint fit quality cut, χ2/d.o.f.< 5;

(e) Eγ(Si
800, θ

i, φi) > E0, where E0 is lower limit of the energy range. E0 takes values of
1019.0, 1019.5 and 1020.0 eV in the present analysis. The training of the classifier is performed
with E0 = 1018.5.

Additionally, we exclude the events with the arrival times correlated with the lightnings reg-
istered by the National Lightning Detection Network [38–40] at the location of TA SD. There is
an evidence that Terrestrial Gamma-Ray Flashes induce the electromagnetic showers similar to the
photon-induced events [41, 42].
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Reconstruction of each data and MC event results in a set of the following features used
as an input of the neural-network classifier along with the time-resolved signals at SD stations
(waveforms) [43]:

1. Zenith angle, θ;

2. Signal density at 800 m from the shower core, S(800);

3. Linsley front curvature parameter, a;

4. Area-over-peak (AoP) of the signal at 1200 m [44];

5. AoP slope parameter [45];

6. Number of detectors hit;

7. Number of detectors excluded from the fit of the shower front;

8. χ2/d.o. f .;

9. Sb parameter for b = 2.5, 3.0, 3.5 and 4.5 [46];

10. The sum of signals of all detectors of the event;

11. An average asymmetry of signal at upper and lower layers of the detectors;

12. Total number of peaks over both upper and lower layers of all detectors hit. To suppress
accidental peaks as a result of FADC noise we define a peak as a time bin with a signal above
0.2 VEM which is higher than a signal of 3 preceding and 3 consequent time bins.

13. Number of peaks for the detector with the largest signal;

14-15. Total number of peaks present in the upper layer and not in lower (and vice versa).

3.1 Method

In present Talk novel neural-network classifier is employed. The architecture of the classifier
includes convolutional and recurrent neural networks and is explained in [50]. The classifier uses
both time-resolved signals for all triggered SD stations of the event and composition-sensitive
event features listed in Section. 3. The classifier is trained using the proton Monte-Carlo set as a
background and the photon as a signal. The Monte-Carlo set is split into three parts: (I) for training
the classifier, (II) for cut optimization, (III) for exposure estimate.

The result of the classifier is a single parameter ξi for each event “i” which by it’s definition
lies in range 0 ≤ ξi ≤ 1. The histograms of ξ-parameter for data and simulated events with
reconstructed photon energy greater than 1019.0 eV and 1019.5 eV are shown in Figure. 1.

The photon candidates are selected with the cut on ξ

ξ > ξcut . (1)

The cut is optimized with the part II of MC with the merit factor defined as an average photon flux
upper limit assuming the null-hypothesis is valid: all events in the data set are protons.
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Figure 2: Photon flux limit presented in this Talk (TA SD) compared with the results from AGASA [4],
Pierre Auger Observatory SD [10, 14] and hybrid data [11], Yakutsk [6], TA SD 9 years result [13], and the
predictions of cosmogenic photon flux in certain models of [47, 48]. The prediction of super-heavy dark
matter (SHDM) model is shown for leptonic and hadronic decay channels [49]. The mass of SHDM particle
is 1000 EeV and the lifetime for this mass is mostly constrained by Auger hybrid photon limits. The lines
correspond to the flux in the TA field of view, which is inferior to the flux in the Southern Hemisphere.

4. Photon search results

Geometrical exposure for the considered SD observation period with 0◦ < θ < 55◦ and
boundary cut is given by

Ageom = 13221 km2 sr yr . (2)

The effective exposure after the cuts Aγ
e f f

is given in Table 1.

E0 quality cuts ξ > ξcut Ae f f km2 sr yr
1019.0 43.7% 59.4% 3428
1019.5 52.0% 80.7% 5546
1020.0 64.3% 92.7% 7875

Table 1: Contribution of the cuts to an effective exposure at the energy ranges of interest. The value
represents a ratio of the exposure after the given cut to the exposure before cut.

Implementation of novel neural-network classifier substantially increased the efficiency of the
photon candidate selection (ξ > ξcut ) compared to the previous analysis with BDT classifier (16.2%,
37.2% and 52.3% for log10 E0 = 19.0, 19.5 and 20.0, correspondingly) [13].
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An upper limit on a mathematical expectation of number of photons is determined following
Ref. [51] in the assumption of zero background. The latter assumption is conservative. For reference
we calculate the expected number of false positive photon candidates b using proton Monte-Carlo.
The flux upper limits follow from the relation

n̄γ = FγAγ
e f f

. (3)

The number of photon candidates and resulting 95% CL photon diffuse flux upper limits are
summarized in Table 2 and are compared to the results of other experiments in Figure 2.

E0, eV 1019.0 1019.5 1020.0

γ candidates 2 1 0
b 0.8 0.4 0.05

n̄ < 6.72 5.14 3.09
Ae f f 3428 5546 7875

Fγ < 2.0 × 10−3 9.3 × 10−4 3.9 × 10−4

Table 2: The preliminary number of γ candidates, background expectation b estimated with proton
Monte-Carlo, 95% CL upper limits on the number of photons in the data set n̄γ and on the photon flux Fγ
(km−2yr−1sr−1).
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