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High energy  cosmic  rays  and gamma rays interacting the  atmosphere  produce  extensive  air
showers (EAS) of secondary particles emitting Cherenkov light. Being detected with a telescope
this light forms "images" of the air shower. In the TAIGA project, model data are widely used to
analyze images obtained experimentally. The difficulty is that the computational models of the
underlying physical  processes are very resource intensive,  since they track the type,  energy,
position and direction of all secondary particles born in EAS. For some data analysis purposes,
this information is redundant, so that less complex and more efficient generation methods can be
used. We applied a machine learning technique called Generative Adversarial Networks (GAN)
to quickly generate images of two types: from gamma and protons events. As a training set, we
used a sample of 2D images obtained using TAIGA Monte Carlo simulation software, containing
about 50,000 events. It has been experimentally established that the generation results best fit the
training set in the case when for two different types of events we create two different networks
and  train  them  separately.  For  gamma  events  a  discriminator  with  a  minimum  number  of
convolutional layers was required, while for proton events, more stable and high-quality results
are obtained if two additional fully connected layers are added to the discriminator. Testing the
generators  of  both  networks  using  third-party  software  showed  that  more  than  90% of  the
generated images were found to be correct. Thus, the use of GAN provides reasonably fast and
accurate simulations for the TAIGA project.
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1. Introduction

High energy cosmic rays and gamma rays interacting the atmosphere produce extensive air
showers (EAS) of secondary particles. The secondary particles, in turn, emit flashes of light in
forward direction due to the Cherenkov effect. This light can be detected on the ground using
arrays  of  Imaging Atmospheric  Cherenkov Telescopes  (IACTs)  [1].  During  operation,  each
IACT records a set of images of the air shower against the background light of the night sky.

The TAIGA experiment (Tunka Advanced Instrument for cosmic ray physics and Gamma
Astronomy) [2]  consists  of  different  detector  systems and measures  air  showers,  which are
initiated by charged cosmic rays or high energy gamma rays. The TAIGA Cherenkov telescope
array (the TAIGA-IACT detector) is used for gamma astronomy. Gamma events are events of
interest because photons, being electrically neutral, can be accurately extrapolated back to their
origin.  However,  gamma rays  of  very  high  energies  account  for  only  a  minor  part  of  the
recorded events [3], while the rest are electrically charged cosmic rays, mostly protons. Thus, in
the TAIGA-IACT project, proton events are considered as background ones, and the main task
is to extract rare gamma events from the proton flux.

In the TAIGA project,  simulated data are widely used:  for calibrating the detector,  for
reconstruction of air-showers and for ensuring correct gamma event/proton event separation.
Thus, for the experiment to work, a large number of new simulated images of both gamma
events and proton events are regularly required.

Currently, events images for the TAIGA-IACT project are modeled using special software
that performs realistic Monte-Carlo simulations [4]. First, the shower itself is simulated using
the  CORSIKA toolkit  [5],  that  performs  detailed  direct  simulation  of  EAS  evolution.  The
response of the IACT system was simulated using the special OPTICA-TAIGA software [6]
developed at JINR, Dubna, that performs a full ray tracing of the Cherenkov photons through
the telescopes' optics.

The difficulty is that the computational models of the underlying physical processes are
very  resource  intensive  and time-consuming.  For  some analysis  purposes  such  as  synthetic
minority  oversampling  [7],  this  information  is  redundant,  so  that  less  complex  and  more
efficient  generation  methods  can  be  used.  Here  we  demonstrate  the  possibility  of  using  a
machine  learning  technique  called  Generative  Adversarial  Networks  (GAN)  [8]  to  quickly
generate images of gamma and protons events for the TAIGA-IACT project. The peculiarity of
GANs is that they can learn from images from a given set of training data, and then generate
new images that  are  statistically  indistinguishable  from the images of  the  training set.  And
although learning can take a long time, generation is very fast.

Recently,  generative adversarial  networks have been actively used in  various  fields  of
astrophysics.  GANs  were  applied  to  generate  astronomical  images  of  galaxies  [9,  10],  to
improve noisy astrophysical images [11, 12], to perform simulations of cosmic web [13]. Thus,
the use of GANs has proven to be effective for scientific applications in astrophysics. Further in
this paper, we will show the results of applying this method to generate images of both gamma
and proton events of the Cherenkov telescope for the TAIGA-IACT project.

The rest of the article is structured as follows. In the second section, we briefly review the
basic idea of a GAN in general. In the third section we describe how the data for the training set
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was  prepared  in  our  case.  In  the  fourth  section,  we  present  the  network  architecture  for
generating gamma and proton events. In the fifth section the correctness of the results obtained
is assessed. The final section contains a brief summary and a discussion of the results.

2. Generative Adversarial Networks

From  a  technical  point  of  view  a  GAN  [8]  is  a  special  class  of  machine  learning
frameworks  designed  to  generate,  improve  or  process  images.  Each  GAN consists  of  two
contesting parts: a generator and a discriminator, and each part itself is a neural network.

Generator is a neural network that takes a random vector as input and tries to transform
this input into images similar to the real ones. Generator performs the transpose convolution
procedure thus increasing the size of its output relative to the input.  Discriminator is also a
neural network that tries to distinguish between real images and fake images produced by the
generator. In fact, discriminator is a classic convolutional neural network (CNN) that performs
image classification.  Generator  and  discriminator  are  trained together  on  real  images  in  an
adversarial  game,  until  the  discriminator  model  is  fooled about  half  the  time,  meaning the
generator model is generating plausible examples. The structure of a typical GAN is shown in
Figure 1.

Figure 1. The structure of a typical GAN

In addition to the trainable network parameters, there are also hyperparameters (number of
inner layers, filter size for each layer, activation functions, etc.) that are selected manually for
each specific task. We have considered different combinations of hyperparameters and further in
the article we suggest the combination that provided us with the best results for today.

3. Training set preprocessing

For training we used a sample of two-dimensional images obtained using OPTICA-TAIGA
Monte Carlo simulation software, containing 25000 gamma events and 25000 proton events. It
is  worth noting that  preprocessing of  the  training set  is  extremely important  for  generating
images similar to those recorded by IACT.  When preparing the training sample images,  we
applied cleaning, coordinate transformation, image resizing and pixel values recalculation.
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Figure 2. Examples of the input images

Examples of the original images and the images after preprocessing are shown in Figure 2.

3.1 Cleaning

Normally, Monte Carlo images contain noise from the night sky background fluctuations
and electronic components. Image cleaning is a conventional procedure to remove such noise
thus leaving only images produced by a shower of secondary particles  [14]. In theory, GANs
can  generate  noisy  images  as  well  as  cleaned  ones.  Our  experiments  show that  our  GAN
reproduces cleaned images better. In order to teach our GAN to generate cleaned images, we
had to clean the images from the training set.

3.2 Coordinate transformation and image resizing

The TAIGA-IACT telescope cameras consist of arrays of photomultipliers arranged in a
hexagonal grid. Each photomultiplier produces one pixel of the image. Accordingly, the original
images are also hexagonal. However, the current high performance GAN implementations are
designed for square grids. That's why first, we generated rectangular images from hexagonal
ones by transition to an oblique coordinate system. As a result,  we got images of 31 by 30
pixels. Then, to make the images square, we resized each image to 32 by 32 pixels by adding
two columns of zeros to the right and one row of zeros to the bottom.

3.3 Pixel values recalculation

Since the training set contains images with different pixel values (i.e. different energies),
we had to switch to a logarithmic scale by applying the logarithm function to each pixel of each
image: ln(1+x).

4. GAN architecture for the TAIGA-IACT project

It was experimentally found that training is more stable and the generation results best
correspond to the training set in the case when separate training is performed for two different
types of events, that is, we train one network to generate proton event images and another to
generate gamma event  images.  In fact,  these networks differ  only in the architecture of the
discriminators,  while  the  architecture  of  the  gamma  image  generator  is  identical  to  the
architecture of the proton image generator.
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4.1 Generator architecture (common for both gamma events and proton events)

This architecture of the generator (see Figure 3) is more or less standard and similar to
those suggested in the books for image generation.  The generator takes a random vector as
input, and then uses transpose convolution to upsample until it gets an image of the desired size.
All layers except the output layer use 4x4 filters and a leaky ReLU function with alpha=0.2 as
the activation function. The output layer has one 6x6 filter and uses a sigmoid for its activation.

Figure 3. The generator architecture

4.2 Discriminator architecture for gamma events

The discriminator architecture for gamma (see Figure 4) is also more or less standard. The
discriminator for gamma events is a small classic convolutional network that uses 4x4 filters in
all layers. The convolutional layers use a leaky ReLU function with alpha=0.2 as the activation
function. The output layer uses a sigmoid as its activation function.

Figure 4. The discriminator architecture for gamma events

4.3 Discriminator architecture for proton events

The discriminator architecture for proton events is shown in Figure 5. We found that for
proton events having a standard architecture, our discriminator becomes unstable and from time
to time generates random additional spots, noise, or completely black images. Our experiments
have shown that adding several dense fully connected layers before the output layer solves the
problem. In the convolutional layers, the convolution filter size is 4x4; the leaky ReLU function
with alpha=0.2 is used for the activation. In the fully connected layers the activation function is

5



P
o
S
(
I
C
R
C
2
0
2
1
)
8
7
4

Fast simulation for TAIGA-IACT with GANs Julia Dubenskaya

a leaky ReLU function with alpha=0.2, and the dropout with a probability of 0.4 is also used.
The output layer uses a sigmoid function for its activation.

Figure 5. The discriminator architecture for proton events

5. Simulation results

Based on the above, we created two separate GANs - for gamma and for protons - and for
each of them we selected 25000 events of the corresponding type as a training set. Thus, for the
gamma network we used only gamma events and for the proton network we used only proton
events. We implemented these networks using a TensorFlow  [15] software package. Network
training at the GPU Tesla P100 took about 6 hours for each network. After training, generation
of 4000 events (of any type) takes about 10 seconds. Then the generated images are converted
back to hexagonal form.

Examples of the generated images and the images after  back conversion are shown in
Figure 6.

Figure 6. Examples of the generated images

For  verification,  we  generated  two  samples  of  4000  event  images  of  each  type  and
classified them using the third party software tool that is used for classification in the TAIGA-
IACT project  [16]. This software tool determines the probability that an image is a gamma
image (gamma likelihood).

The plot in Figure 7 shows the results of the gamma classification - the distribution of the
number  of  generated  gamma events  by  probabilities.  The  X-axis  in  the  plot  represents  the
probability that the image is a gamma event and the Y-axis is the number of generated gamma
events classified as gamma events with a given probability. The plot shows that for more than
half of the generated events,  the calculated probability is 90-100%. Moreover, for 94.5% of
generated events, the probability exceeds 50% - thus, these events are recognized as gamma
events.
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Figure 7. The gamma likelihood for the gamma events

The plot in Figure 8 shows the results of the proton classification. The X-axis in the plot
represents the probability that the image is a gamma event and Y-axis is the number of generated
proton events classified as gamma events with a given probability. As can be seen, for most of
the generated proton events, the calculated probability is close to zero, which means that the
generated proton events differ with confidence from gamma events.

Figure 8. The gamma likelihood for the proton events

So, the verification showed that most of the generated images of both types turned out to
be very similar to the images from the training set, while these are completely new images that
can be used in the experiment.

6. Conclusion

Summarizing the above, we can conclude that generative adversarial networks simulate
proton and gamma events for the TAIGA-IACT experiment with a high degree of accuracy and
reliability. Most of the generated events are indistinguishable from the events generated using
the traditional Monte Carlo method. At the same time, the rate of generation of events using
GANs is much higher than the rate of generation by the Monte Carlo method. To ensure that the
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generated sample contains only correct images, all generated images should be checked by the
TAIGA-IACT classification program, with inappropriate images being discarded.

In our future work, we hope to further increase the accuracy of modeling, aiming, among
other things, to minimize the number of inappropriate images.
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