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1. Introduction

Magnetic fields are present in almost every observable astronomical object. Yet, their existence
and role in the early universe is uncertain. A combination of W-ray lower bounds [1, 2] and radio
and CMB upper bounds [3, 4] on Intergalactic Magnetic Field (IGMF) provides an evidence for
existence of fields with the strength 10−16 G< � < 10−9 G in the intergalactic medium (see Fig. 1)
[5, 6]. However, primordial nature of these fields is yet to be established.

[7] have shown that account of the magnetic field driven turbulence on plasma at the epoch
of recombination can relax the 4.4f tension between estimates of the Hubble parameter from the
Cosmic Microwave Background (CMB) measurement [8] and present-day universe measurements
using supernovae type Ia [9] and based on gravitationally lensed systems [10]. The resulting
magnetic field strength � ∝ 10−11 G.

Another indication of existence of cosmological magnetic fields can be derived from measure-
ments of redshift dependent absorption by the 21 cm line of neutral hydrogen at redshifts about
I ∼ 10. EDGES experiment has recently reported an excess opacity of the Universe in the redshift
range 15 < I < 20 [11]. The possible explanation of the EDGES data requires magnetic field in
the range 5 × 10−13 G< � < 6 × 10−12 G. [12].

As shown in [13, 15] presence of helical magnetic field at the epoch of Electroweak phase
transition can enable explanation of the baryon asymmetry of the universewithin the StandardModel
of particle physics. This requires the range of magnetic field strength 10−14 G< � < 10−12 G.

Combination of these observational hints for existence of cosmological magnetic field defines
an order-of-magnitude wide "sweet spot" around � ∼ 10−12 G in which the field estimates from
multiple effects intersect. We demonstrate that even though the field is at the upper sensitivity end
of the W-ray technique, its detection should still be possible with a deep exposure of the nearest
blazars with CTA [16].

2. Analytical estimates

Fields with the strength in the range � ∼ 10−12 G are at the upper end of the sensitivity reach
of the W-ray measurement method [5]. They are strong enough to deflect trajectories of electrons
with energies in 10-100 TeV range. This implies that the highest energy W-ray signal accessible to
telescopes should be used for the signal measurements. In this situation it is not clear if the small
angle deflection approximation previously used for the sensitivity estimates used by [5] is valid.
We re-assess the analytical estimates in this high-energy / strong field regime below.

We consider secondary emission induced by interactions of primary W-rays with energies �W0.
The mean free path of these W-rays through the EBL is

_W0 ' 2.5
[

�W0

100 TeV

]−1.6
Mpc (1)

For the analytical estimates we assume that each primary W-ray produces electron and positron with
energies �4 = �W0/2. Such electrons produce inverse Compton emission at the energy

�W ' 8
[

�4

50 TeV

]2
TeV (2)
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Figure 1: Known constraints on IGMF [5, 6] and hints of existence of cosmological magnetic field from
CMB [7], 21 cm line [12] and baryogenesis [13], compared to the sensitivity of different detection techniques.
Black upper bound is from the analysis of CMB signal by [14].

Accumulation of such small deflections on the electron cooling distance scale �4 results in the
overall deflection

Δ =

√
�4

_�
X ' 0.2

[
�4

50 TeV

]−3/2 [
�

10−11 G

]3/2
' 0.2

[
�W

8 TeV

]−3/4 [
�

10−11 G

]3/2

where '! is the electron’s gyroradius and we used that the correlation length _� of cosmological
magnetic fields scales with the strength as [17] � ∼ 10−11 [_�/1kpc] G

If the field strength is � ∼ 10−11 G, the opening angle of the secondary emission cone at 8 TeV
can be as large as opening angle of the AGN jets. The secondary emission flux within the cone gets
suppressed as

�4GC

�W0
=
Θ2
94C

Δ2 ' 1
[
�W

8 TeV

]3/2 [
�

10−11 G

]−3 [
Θ 94C

10◦

]2
, � & 10−11 G

where we have assumed Θ 94C ∼ 10◦ ' 0.2. Such flux suppression occurs below the energy �2A8C at
which Δ = Θ 94C .

If � < 10−11 G, the deflection angle Δ is smaller than the opening angle of the jet and extended
emission is still observable toward 10 TeV energy. The maximal possible angular size of the
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Figure 2: Left: Comparison of high-energy ends of the spectra of Mrk 421 and Mrk 501 [18]. Black curves
are observed, blue curves are the intrinsic spectra of the sources. Green line shows CTA North point source
sensitivity. Green dotted line shows an analytical estimate of the secondary W-ray flux from Mrk 501 in
1-10 energy range assuming no influence of IGMF. Right: Dark matter density profile along the line of sight
towards Mrk 501 based on constrained simulations of the LSS [? ].

extended emission is determined by the transverse size of the jet at the distance _W0 and corresponds
to the angular size

Θ4GC,<0G =
'4GC

�
' 0.24◦

[
Θ 94C

10◦

] [
�W

8 TeV

]−0.8 [
�

120 Mpc

]−1

where we have used the distance to Mrk 421 and Mrk 501 for the numerical estimate. The time
delay of the extended signal can be estimated as )4GC,<0G = �Θ2

4GC,<0G/2 ∝ 10 kyr and imposes
a requirement on the duty cycle of the source for which the extended emission is detectable: the
source should have been active over the last 10 kyr.

3. Selection of best target for the search of strong IGMF

Probe of the strongest fields � . 10−11 G requires

(a) large primary point source power in the 100 TeV energy range;

(b) detectability of extended emission in multi-TeV energy range;

(c) favorable local environment around the source.

Below we present arguments that at least one source, Mrk 501, fulfils these three conditions
and can be used for the probe of strong IGMF of cosmological origin.

The highest energy photons detected from blazars are those from the two nearest BL Lacs,
Mrk 421 and Mrk 501. Fig. 2 shows the spectral energy distribution of these sources measured by
HAWC [18]. One can see that Mrk 421 intrinsic luminosity is most probably strongly suppressed
at 100 TeV. To the contrary, Mrk 501 has harder spectrum which does not show any signature of
high-energy cut-off. In the view of this fact, we consider Mrk 501 as a more promising candidate
for the search of the strongest IGMF and the following calculations are limited to this source. We
assume that its intrinsic spectrum extends up to 100 TeV, as shown in Fig. 2.
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Figure 3: Angular distribution of primary and secondary photons in different energy ranges. Black his-
tograms show the primary point source signal, green, blue and red histograms show the extended emission
calculated for different magnetic field strengths: 10−12 G, 3×10−12 G, 10−11 G. Horizontal dashed line shows
the level of residual cosmic ray electron background measured by HESS [23].

As was shown in [19] large magnetized bubbles blown by the source host galaxy can effectively
remove secondary gamma-ray flux. Strong (� > 10−12 G)magnetic fields in the bubbles sufficiently
deflect charged particles created in the bubbles and suppress their secondary gamma-ray flux at
the detector all across its energy range. This changes the overall normalization of the secondary
emission, without changing its shape. The average flux suppression can reach 20%-50% for
hypothetical sources with hard intrinsic spectra extending up to �cut = 100 TeV if the size of the
bubble is larger than several Mpc. Therefore, local environment of the source should be taken into
account in the analysis of its secondary flux.

To explore environmental effects around Mrk 501, we rely on constrained cosmological simu-
lations derived using the BORG inference method [20–22]. From Fig.2 one can see that the source
is not found in a node of the LSS and hence does not appear to be close to a rich galaxy cluster but
rather in an underdense region with the average density d below the critical density of the universe.
This means that the IGMF around the source should not be amplified in the course of structure
formation.

4. Numerical modelling

In this section we support this qualitative argument with numerical modelling of the extended
source signal around Mrk 501, which is the brightest blazar in the 10 TeV sky. For this purpose we
use the Monte-Carlo simulation code CRbeam developed in [24].
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Figure 4: Left:Significance of detection of the extended emission signal in different energy ranges as a
function of the assumed magnetic field strength. The assumed exposure of CTA is ) = 50 hr. Right: CTA
exposure time needed for 3f (lower curve) and 5f (upper curve) detection of the extended emission signal,
as a function of IGMF strength.

We consider a primary W-ray source with the powerlaw spectrumwith the slope 3#/3� ∝ �−2.4

extending up to 100 TeV energy, situated at the distance � = 150 Mpc. The W-rays are emitted
into a jet with opening angle Θ 94C = 5◦ aligned along the line of sight. We simulate propagation
of primary W-ray , taking into account pair production and inverse Compton scattering on CMB
and Extragalactic Background Light (model of [25]) and deflection of the charged component in
magnetic field. The magnetic field is generated with Kolmogorov power spectrum. Fig. 3 shows
the result of calculation of extended emission pattern at different energies for a range of IGMF
strengths.

5. Results and discussion

We have used the results of the Monte-Carlo modelling to investigate detectability of the
extended emission signal with CTA. To do this, we have calculated the statistics of the point source
signal, extended emission signal and residual cosmic ray background in each angular bin of the
histograms shown in Fig. 3, for different CTA exposures. In this way we have generated mock
CTA datasets. We have fitted the mock data with a model of point source plus residual cosmic
ray background model, ignoring the presence of the extended source. We have then estimated the
significance of detection of the extended emission in the simulated data set by calculating the level
of inconsistency of the "point source + residual cosmic ray background" model with the simulated
data.

The results of this analysis are shown in Fig. 4. If the IGMF strength is below 3 × 10−12 G,
the extended signal is detectable with significance larger than 3f in the energy ranges 0.5-1.5 TeV
and 1.5− 4 TeV. Somewhat stronger magnetic field, 3× 10−12 < � < 6× 10−12 G is still marginally
detectable through the extended emission at somewhat higher energy, up to 10 TeV. The extended
emission signal associated to the 10−11 G IGMF is not detectable in a 50 hr exposure. Fig. 4
shows the exposure needed for the 3f evidence for and 5f discovery of the extended emission for
different IGMF strengths. From this figure one can see that with a 150 hr exposure, an evidence for
the presence of extended emission in 10 TeV energy range can be found even for the magnetic field
with the strength 10−11 G.
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To summarise, we have shown that direct detection of the strong cosmological magnetic field,
which is needed for the resolution of the tension between different measurements of the Hubble
parameter [7] and for the explanation of the EDGES 21 cm line opacity [12] is possible with the
W-ray measurement technique and at least one source, Mrk 501, is suitable for this purpose.
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