Modelling uncertainties in GeV – TeV flux predictions of Galactic globular clusters

Christo Venter,a* Hambeleleni Davids,a,b Andreas Koppa and Michael Backesc,a

aCentre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
bDepartment of Science Foundation, School of Science, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia
cUniversity of Namibia, Department of Physics, Chemistry & Material Science, Windhoek Campus, Private Bag 13301, Windhoek, Namibia

E-mail: christo.venter@nwu.ac.za, hndiyavala@unam.na, ak@tp4.ruhr-uni-bochum.de, mbackes@unam.na

Globular clusters are multi-band emitters, with their gamma-ray emission having been variously attributed to dark matter annihilation, a resident gamma-ray burst, or collective emission from a white-dwarf or millisecond-pulsar population hosted by the cluster. Terzan 5 has plausibly been detected in the gamma-ray band by H.E.S.S., which also produced constraining stacking upper limits on the integral gamma-ray fluxes of a population of other Galactic globular clusters. Using a leptonic model that invokes host millisecond pulsars in globular clusters as sources of relativistic particles, we perform three case studies. First, we demonstrate that uncertainty in model parameters leads to a large spread in the predicted gamma-ray flux for a population of clusters, yet there are regions in parameter space for which the stringent H.E.S.S. stacking upper limits are satisfied. Two additional case studies on M15 (for which MAGIC recently derived stringent differential flux upper limits) and ω Cen (from which five pulsars have recently been detected at radio frequencies) indicate that it is vital to increase measurement accuracy on key model parameters to improve precision in predictions of cluster fluxes. This has important implications for the observational strategy of the CTA.
1. Introduction

There are about 160 Galactic globular clusters (GCs) associated with our Milky Way [1]. These sources emit photons across the electromagnetic spectrum. About 20 of these GCs have been detected in the GeV band by the Fermi Large Area Telescope (LAT) [2–4]. The High Energy Stereoscopic System (H.E.S.S.) has plausibly detected a single GC in our Galaxy, i.e., Terzan 5 [5], in the very-high-energy (VHE; \(E > 100 \text{ GeV} \)) band and also published VHE upper limits from 15 other GCs [6]. A more sensitive stacking analysis involving a live-time-weighted flux of these 15 GCs resulted only in upper limits. Other Cherenkov telescopes also produced upper limits (e.g., [7]). The Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) provided a deep upper limit on M15 of \(F(E > 300 \text{ GeV}) \), i.e., \(< 0.26\% \) of the Crab Nebula flux. Stringent differential flux upper limits were also obtained [8]. Earlier, H.E.S.S. published an upper limit on the integral flux of 47 Tucanae of \(F(E > 800 \text{ GeV}) < 6.7 \times 10^{-13} \text{ cm}^{-2}\text{s}^{-1} \) [9].

Several leptonic and hadronic models predict the radiated spectrum of GCs. Cumulative pulsed curvature radiation (CR) from an ensemble of millisecond pulsars (MSPs) embedded in a GC leads to a detectable GeV spectral component [10–12]. Within leptonic models, unpulsed emission may result from relativistic leptons injected by MSPs and radiating synchrotron radiation (SR) and inverse Compton (IC) emission as these particles traverse the GC [12–17]. Recent application of such a model [18] resulted in a reasonable fit to the broad spectral energy density (SED) of Terzan 5: the hybrid model invokes unpulsed SR and IC components to model the radio and TeV data as well as cumulative pulsed CR to fit the Fermi LAT data and pulsed SR from electron-positron pairs within the pulsar magnetospheres to explain the hard Chandra X-ray spectrum. Additionally, [19] found that tens of Galactic GCs may be detectable within a reasonable amount of observation time by the next-generation Cherenkov Telescope Array (CTA). Other models assume white dwarfs that inject relativistic leptons into the GC [20], or a gamma-ray burst remnant that accelerates hadronic particles and secondary leptons that in turn contribute to the high-energy emission from GCs [21]. Conversely, a combination of cumulative CR emission from MSPs and dark matter annihilation could perhaps also explain the GeV emission detected by Fermi LAT from 47 Tucanae [22].

A general conclusion from the modelling seems to be that they predict quite a wide range of fluxes, depending on the number of free model parameters, and how well constrained they are. This proceedings article provides a summary of our assessment of uncertainties in the predicted VHE flux of GCs for a given leptonic model, strictly due to parameter uncertainties [23]. We find that one cannot simply scale the model output among different GCs, since the range of predicted fluxes depends crucially (sometimes non-linearly) on the unique input parameters plus their uncertainties per source. We advocate using a population approach and stacked upper limits to further reduce uncertainties in model predictions. We will investigate three cases in particular: a population of GCs for which integral flux upper limits were derived by H.E.S.S., and a Northern-hemisphere cluster, M15, and a Southern-hemisphere one, \(\omega \) Cen, for which differential flux upper limits exist. We find that there are indeed regions in parameter space for which the stringent stacking upper limits are satisfied, given parameter uncertainties.

In Section 2, we briefly discuss the model and its free parameters. In Section 3, we discuss the method employed to calculate the IC flux expected from the GCs plus its errors derived using a Monte Carlo process. Section 4 describes the results while in Section 5 we offer our conclusion.
2. Model

Here, we focus on the VHE component. We use the model by [17] to calculate the particle transport (diffusion and radiation losses) in a spherically symmetric, stationary approach. We then predict the TeV spectral component for GCs due to the cumulative IC by leptons injected by a population of MSPs into the GC. The seven main free parameters of this model are [18, 19]: cluster magnetic field (B), power-law index (Γ) of the injected particle spectrum, number of GC stars (N_*), distance to the cluster (d), the average spin-down luminosity per pulsar ($\langle E \rangle$), the conversion efficiency of spin-down luminosity into particle acceleration (η), and number of MSPs in the GC (N_{MSP}). We fixed the minimum and maximum particle energies, spatial diffusion coefficient (κ), the core radius (r_c), the half-mass radius (r_h), and the tidal radius (r_t) for each GC. After solving for the particle spectrum in different spatial zones, we predict the emission properties of each zone, and finally obtain the spatially-dependent differential and integral VHE flux via a line-of-sight calculation.

3. Monte Carlo method

Our first case study entails the prediction of the cumulative TeV flux from the 15 Galactic GCs observed by H.E.S.S., and comparing this with their integral flux upper limits. We use the method of [14] and calculate the single-GC and stacked integral VHE flux of 15 GCs [6], with uncertainties due to the uncertainty in model parameters. We randomise over the seven free parameters (B, Γ, N_*, d, η, $\langle E \rangle$ and N_{MSP}), but fix the structural and diffusion coefficient parameters. First, we set the source strength $Q_0 = 1$ and only use four free parameters (B, Γ, N_*, and d). We calculate the integral flux and obtain a spread of fluxes, finding that a finer parameter sampling grid lead to a smoother distribution of fluxes. Second, we find convergence of the flux distribution with an increase of the number of trials. We thus note that undersampling does not give a smooth flux distribution, but oversampling indeed leads to convergence. Lastly, we perform nested loops over all seven free model parameters to calculate $Q_0(\Gamma, \eta, \langle E \rangle, N_{\text{MSP}}) \neq 1$, and multiply the correct flux, pre-calculated for $Q_0 = 1$ and depending only on B, Γ, d, and N_*, by the actual value of Q_0. The spread in flux reflects the uncertainty in model parameters, and as the number of trials is increased, a smoother distribution of predicted flux results.

Our second and third case studies involve differential flux predictions for M15 and ω Cen. We again use the method of [14] to estimate the uncertainty in the differential flux of M15 at 13 different observer-defined energy bins [8]. See [23] for details on the chosen parameter grids and number of trials.

4. Results

We study two parameter combinations (ranges) when attempting to satisfy the H.E.S.S. upper limits. In this way, we note how the stringent stacking upper limit points to a constraint on initial best-guess parameter ranges.

The first set (range) of parameter combinations is as follows: $d' \in \left[\frac{d}{2}, \frac{3d}{2}, d, \sqrt{2}d, 2d \right]$, $N'_* \in \left[\frac{N_*}{2}, \frac{N_*}{\sqrt{2}}, \frac{\sqrt{2}N_*}{2}, 2N_* \right]$ (see [23] for values of d and N_*), $B \in [1, 9]$ in steps of 2 μG,
Table 1: H.E.S.S. flux upper limits [6] and model predictions for the first set of parameter combinations. The columns are: the GC name; analysis energy threshold (TeV); integral photon flux upper limits $F_{UL}(E > E_{th})$ in units of 10^{-13} photons cm$^{-2}$s$^{-1}$; median of \log_{10} of integral flux distribution F_μ in same units; ratio between the σ_{16} and the median (%); ratio between σ_{84} and the median (%); ratio between the median and the flux upper limit; geometric mean in units of 10^{-13}ph cm$^{-2}$s$^{-1}$; ratio between standard deviation σ and the median (%); and the ratio between the geometric mean and median. The bottom row represents results for a stacking scenario [6].

<table>
<thead>
<tr>
<th>GC name</th>
<th>E_{th}</th>
<th>F_{UL}</th>
<th>F_μ</th>
<th>σ_{16}/F_μ</th>
<th>σ_{84}/F_μ</th>
<th>F_{UL}/F_μ</th>
<th>F_G</th>
<th>σ/F_μ</th>
<th>F_G/F_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 104</td>
<td>0.72</td>
<td>19</td>
<td>0.154</td>
<td>86</td>
<td>614</td>
<td>0.0081</td>
<td>0.145</td>
<td>929</td>
<td>0.94</td>
</tr>
<tr>
<td>NGC 6388</td>
<td>0.28</td>
<td>15</td>
<td>0.187</td>
<td>82</td>
<td>410</td>
<td>0.0125</td>
<td>0.179</td>
<td>610</td>
<td>0.96</td>
</tr>
<tr>
<td>NGC 7078</td>
<td>0.40</td>
<td>7.2</td>
<td>0.053</td>
<td>84</td>
<td>573</td>
<td>0.0074</td>
<td>0.051</td>
<td>737</td>
<td>0.95</td>
</tr>
<tr>
<td>Terzan 6</td>
<td>0.28</td>
<td>21</td>
<td>0.218</td>
<td>84</td>
<td>463</td>
<td>0.0104</td>
<td>0.208</td>
<td>766</td>
<td>0.92</td>
</tr>
<tr>
<td>Terzan 10</td>
<td>0.23</td>
<td>29</td>
<td>0.356</td>
<td>84</td>
<td>475</td>
<td>0.0123</td>
<td>0.337</td>
<td>778</td>
<td>0.95</td>
</tr>
<tr>
<td>NGC 6715</td>
<td>0.19</td>
<td>9.3</td>
<td>0.037</td>
<td>82</td>
<td>429</td>
<td>0.0040</td>
<td>0.035</td>
<td>622</td>
<td>0.96</td>
</tr>
<tr>
<td>NGC 362</td>
<td>0.59</td>
<td>24</td>
<td>0.047</td>
<td>85</td>
<td>513</td>
<td>0.0020</td>
<td>0.044</td>
<td>923</td>
<td>0.94</td>
</tr>
<tr>
<td>Pal 6</td>
<td>0.23</td>
<td>12</td>
<td>0.343</td>
<td>85</td>
<td>578</td>
<td>0.0286</td>
<td>0.324</td>
<td>787</td>
<td>0.94</td>
</tr>
<tr>
<td>NGC 6256</td>
<td>0.23</td>
<td>32</td>
<td>0.101</td>
<td>84</td>
<td>482</td>
<td>0.0032</td>
<td>0.096</td>
<td>810</td>
<td>0.95</td>
</tr>
<tr>
<td>Djorg 2</td>
<td>0.28</td>
<td>8.4</td>
<td>0.317</td>
<td>84</td>
<td>451</td>
<td>0.0377</td>
<td>0.302</td>
<td>713</td>
<td>0.95</td>
</tr>
<tr>
<td>NGC 6749</td>
<td>0.19</td>
<td>14</td>
<td>0.218</td>
<td>84</td>
<td>577</td>
<td>0.0156</td>
<td>0.205</td>
<td>780</td>
<td>0.94</td>
</tr>
<tr>
<td>NGC 6144</td>
<td>0.23</td>
<td>14</td>
<td>0.138</td>
<td>86</td>
<td>492</td>
<td>0.0097</td>
<td>0.129</td>
<td>819</td>
<td>0.93</td>
</tr>
<tr>
<td>NGC 288</td>
<td>0.16</td>
<td>5.3</td>
<td>0.196</td>
<td>85</td>
<td>492</td>
<td>0.0370</td>
<td>0.183</td>
<td>806</td>
<td>0.93</td>
</tr>
<tr>
<td>HP 1</td>
<td>0.23</td>
<td>15</td>
<td>0.172</td>
<td>85</td>
<td>481</td>
<td>0.0115</td>
<td>0.162</td>
<td>797</td>
<td>0.95</td>
</tr>
<tr>
<td>Terzan 9</td>
<td>0.33</td>
<td>45</td>
<td>0.090</td>
<td>87</td>
<td>580</td>
<td>0.0020</td>
<td>0.084</td>
<td>1147</td>
<td>0.93</td>
</tr>
<tr>
<td>Stacking</td>
<td>0.23</td>
<td>3.3</td>
<td>0.895</td>
<td>48</td>
<td>108</td>
<td>0.271</td>
<td>0.923</td>
<td>113</td>
<td>1.03</td>
</tr>
</tbody>
</table>

$\Gamma \in [1.7, 2.9]$ in steps of 0.3, $\eta \in [0.005, 0.08]$ in steps of 0.0075, $\log_{10}(\dot{E}) \in [33.7, 34.7]$ in steps of 0.1, and $N_{\text{MSP}} \in [5, 150]$ in steps of 10. Since our flux distributions appear to be approximately log-normal, we first obtain the median flux F_μ (50th percentile) as well as the 16th and 84th percentile for the single GCs. We also calculate $\sigma_{16} = \mu - F_{16}$ and $\sigma_{84} = F_{84} - \mu$, and study them as percentages: 160σ_{16}/μ and 100σ_{84}/μ, with F_{16} and F_{84} being the 16th and 84th percentiles. We obtain the geometric mean of the flux F_G as well as the standard deviation σ of this flux. We finally calculate the ratios F_μ/F_{UL} as well as F_G/F_μ, indicating that $F_\mu \approx F_G$. For the weighted (stacked) flux, we set the threshold energy to $E_{th} = 0.23$ TeV and calculate $F_w = \frac{1}{\tau_{\text{tot}}} \sum_{i=1}^{15} \frac{\tau_i}{\tau_{\text{tot}}} \times F_i (> 0.23 \text{ TeV})$, where i represents a specific GC, τ_i is the live time for each GC, and τ_{tot} is the total live time.

We found that for this initial choice, the median stacked flux exceeds the upper limit by a factor of 7.6. We therefore considered a second parameter set (Table 1): $\eta \in [0.003, 0.03]$ in steps of 0.003, $\log_{10}(\dot{E}) \in [33, 34]$ in steps of 0.1, and $N_{\text{MSP}} \in [5, 50]$ in steps of 5. There is no unique way of reducing the GC flux. Thus, we reduced the three (degenerate) main parameters determining the source strength Q_0, i.e., η, \dot{E}, and N_{MSP} by a factor of ~ 3 each to illustrate that by lowering Q_0, the flux upper limits may be satisfied. In this case, the predicted median flux is a factor of ~ 4 below the H.E.S.S. upper limit.

We summarise the fluxes we obtained for both the stacked as well as single-GC cases in Figure 1.
Uncertainties in globular cluster modelling
Christo Venter

Figure 1: Flux upper limits (black diamond and squares with arrows) on the observed gamma-ray flux from the population of GCs, as well as the predicted flux medians plus 1σ uncertainties (green and blue) for each of the two parameter combinations. The first entry indicates the stacked flux with 1σ uncertainties. The black diamond and squares and arrows correspond to the observational upper limits, while the green and blue squares and error bars are for the median fluxes and 1σ uncertainty intervals, for the two different parameter combinations as discussed above. Thus, there are indeed parameter combinations that yield fluxes below all of these observational upper limits.

Our second case study involves M15, which was recently observed at low zenith angles by MAGIC [8]. They found an upper limit of $F(E > 0.3 \text{ TeV}) = 3.2 \times 10^{-13} \text{ cm}^{-2}\text{s}^{-1}$, which several times more stringent than the $F(E > 0.44 \text{ TeV}) = 7.2 \times 10^{-13} \text{ cm}^{-2}\text{s}^{-1}$ published earlier by [6]. We create a distribution of differential fluxes for energy bins 2 and 7 (centred on energies of $E = 62 \text{ GeV}$ and $E = 955 \text{ GeV}$) and calculate the median and 1σ uncertainties of the \log_{10} of these fluxes by finding the 16th–50th and 84th percentiles. Figure 2 shows the upper limits from 165 hrs of MAGIC observations on the differential flux, the predicted spectrum for a few different combinations of model parameters, and the median points with 1σ error. For our choice of parameters, we satisfy the MAGIC flux upper limits.

Our third case study involves ω Centauri (NGC 5139). It is the most massive, complex, brightest, and has the largest core and half-light radius of all GCs in the Galaxy [1], and is furthermore suspected to harbour a black hole with total mass $\sim 10^5 M_\odot$ at its centre. The Parkes Radio Telescope has now detected five radio MSPs in this cluster, but no pulsations in the GeV data have been found [24]. In Figure 3 we compare our predicted differential fluxes with the H.E.S.S. and CTA sensitivity curves for 100 hours of observations. We also indicate typical predicted gamma-ray spectra for a few choices of parameter combinations.

5. Conclusions

We assessed uncertainties in the predicted VHE flux of GCs within the context of the leptonic GC model of [17], demonstrating that uncertainty in model parameters leads to a large spread in the
Uncertainties in globular cluster modelling

Christo Venter

Figure 2: Differential flux upper limits (black diamonds with arrows) on the gamma-ray flux from M15 plus a few model spectra (solid lines) for typical parameter combinations, as well as predicted medians and 1σ error bars (green error band) [23].

Figure 3: Differential flux predictions (green error band) for ω Cen, the solid lines indicating example predictions [23].

predicted flux. As expected, we confirmed that a finer grid in parameter space leads to a smoother flux distribution, and a larger number of trials leads to convergence of the flux distribution. Also, the eventual predicted flux range depends on the number of free parameters and their respective ranges.

While none of our predicted individual cluster median fluxes plus uncertainties violated the respective upper limits (Figure 1), our weighted flux violated the H.E.S.S. upper limit for our first set of parameter combinations, although our second parameter combination satisfied the stacked upper limits. Thus we could use this stringent upper limit to non-uniquely constrain the source properties of the MSPs embedded within the GC. For M15, we could satisfy these upper limits for typical parameters. We calculated the TeV flux for ω Cen, indicating that this source may be a possible candidate to be observed by H.E.S.S. or CTA.

Increasing measurement accuracy on model parameters will improve predictions of GC fluxes,
and this will provide better guidance to CTA’s observations. Future models will have to undergo continued scrutiny, taking into account the effect of parameter uncertainty on their predictions as they are confronted with new data.

Acknowledgments

We also acknowledge discussions with James Allison and Leonard Santana. This work is based on the research supported wholly / in part by the National Research Foundation of South Africa (NRF; Grant Numbers 87613, 90822, 92860, 93278, and 99072). The Grantholder acknowledges that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF supported research is that of the author(s), and that the NRF accepts no liability whatsoever in this regard. The Virtual Institute for Scientific Computing and Artificial Intelligence (VI-SCAI) is gratefully acknowledged for operating the High Performance Computing (HPC) cluster at the University of Namibia (UNAM). VI-SCAI is partly funded through a UNAM internal research grant. This study was financially supported by the African German Network of Excellence in Science (AGNES), through the “Programme Advocating Women in Science, Technology, Engineering and Mathematics”.

References

