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In 2017, a high-energy muon neutrino detected by IceCube was found positionally coincident
with the direction of a known blazar, TXS 0506+056, in a state of enhanced W-ray emission.
Soon after, IceCube reported a compelling evidence for an earlier neutrino flare from the same
direction found in the archival data, this time not accompanied by any observed electromagnetic
activity. The IceCube findings suggest searching for flaring neutrino emissions from astrophysical
sources, not necessarily accompanied by flares detected in W-rays. The analysis presented in this
contribution scans the events collected by the ANTARES neutrino telescope in 13 years of data
taking in a search for clustering in space and time. The analysis method is based on an unbinned
maximum likelihood approach. Generic Gaussian and Box profiles are assumed for the signal
time emission, with both the central time and duration of the flare being free parameters in the
likelihood maximization. The time-dependent approach is applied to the catalog of radio-bright
blazars for which a promising directional correlation with IceCube muon tracks was recently
reported [ApJ 894 (2020) 101, ApJ 908 (2021) 157].
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1. Introduction

On 22 September 2017, the IceCube Collaboration detected a ∼300 TeV muon neutrino, with
arrival direction compatible with the position of a known blazar, TXS 0506+056, found in a
flaring state at the time of the neutrino detection [1, 2]. Triggered by this association, the IceCube
Collaboration performed a search for clustering in time at the position of TXS 0506+056 assuming
two different generic profile shapes: a Gaussian-shaped time window and a Box-shaped time
window [3]. The analysis yielded a 3.5f evidence for an excess of high-energy neutrino events,
with respect to atmospheric backgrounds, at the position of the blazar between September 2014 and
March 2015. No electromagnetic activity was observed during the neutrino flare.

Additional hints that blazars are neutrino source candidates were reported more recently, when
a search for correlation between radio-selected blazars and very-high-energy track-like IceCube
events resulted in a promising evidence of association [4], later confirmed in a second analysis that
made use of lower-energy IceCube neutrinos [5]. A similar search for spatial correlation between the
same radio-selected blazars and neutrinos detected by the ANTARES telescope has been performed
and is presented in these proceedings [6].

The list of radio-bright blazars used in [4–6] corresponds to an all-sky sample of 3411
blazars, selected on the basis of their very-long-baseline interferometry (VLBI) radio flux, as those
sources with a flux density integrated over VLBI images at 8 GHz of at least 150mJy. The blazar
MG3 J225517+2409 (J2255+2410) – one of the most significant sources found in the ANTARES
point-source stacking analysis [7] – is not included in the catalog due to the low measured flux.
Here, the most up-to-date version of this catalog (version 2021b, available at the following link
http://astrogeo.org/rfc/) is employed in a search for time and space clustering of ANTARES
events from the direction of the blazars. Only sources with a declination X < 40◦ are employed in
the analysis, for a total of 2774 investigated blazars. The search makes use of the ANTARES events
detected between January 29, 2007 and February 29, 2020 (3845 day livetime) and selected for the
13-year ANTARES point-like source analysis [8], corresponding to a total of 10162 track-like and
225 shower-like events.

2. Search Method and Expected Performance

The search for neutrino flares relies on an unbinned time-dependent maximum likelihood
method. The likelihood, that describes the ANTARES data in terms of signal and background
probability density functions (PDFs), is defined as:

logLs+b =
∑

J∈{tr,sh}

∑
8∈J

log
[ `Jsig
N J
SJ
8
+
N J − `

J
sig

N J
BJ
8

]
, (1)

where SJ
8

and BJ
8

are the values of the signal and background PDFs for the event 8 in the sample
J (tr for tracks, sh for showers), while `Jsig andN J are respectively the number of unknown signal
events and the total number of data events in the J sample. The combined information of three
parameters – direction, energy and detection time – is included in the definition of the PDFs in
order to enhance the signal-to-background discrimination. The same definition of the direction and
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energy PDFs used in the 9-year ANTARES point-like source search [9] is employed. Regarding the
time PDFs, two time profiles are tested for the signal emission, characterized by a Gaussian shape
and a Box shape, and defined as:

Stime
Gaussian(C8) =

1
√

2cfC
4
(− (C8−)0 )2

2f2
C

)
Stime

Box (C8) =
{

1
2fC

, if [)0 − fC ] ≤ C8 ≤ [)0 + fC ];
0, otherwise;

, (2)

with C8 being the detection time of the ANTARES event 8, while)0 andfC being the unknown central
time and duration of the flaring emission, respectively, both fitted in the likelihood maximisation.
Concerning the background time profile, given the small expected contribution of a cosmic signal
in the overall data set, this PDF is built using the time distribution of data events, ensuring a time
profile proportional to the measured data. To avoid statistical fluctuations, this PDF is computed
applying less stringent selection criteria than those of the final sample, using the same approach as
in [10].

The likelihood of Equation 1 is maximised independently at the position of each investigated
source leaving as free parameters the number of signal events `sig = `CAsig + `Bℎsig, the signal spectral
index W, the central time of the flare )0, and the flare duration fC , providing the best-fit values ˆ̀sig,
Ŵ, )̂0, f̂C for each source candidate. In the maximisation, the spectral index can take values between
1.0 and 3.5, so to include the value predicted by the Fermi acceleration mechanism (W = 2.0) and
the softer best-fit spectral indices of the isotropic flux of high-energy cosmic neutrinos measured by
the IceCube Collaboration (between W = 2.92 reported in [11] and W = 2.28 reported in [12]). As
for the time-dependent parameters, )0 can vary over the time range of the investigated ANTARES
data (from 1st January, 2007 until 28th February, 2020), while fC can take values between 1 day
and 2000 days.

The test statistic of the analysis, &, is derived from the likelihood as

& = 2 log
[
Ls+b
Lb
× f̂C

Δ)

]
, (3)

where Ls+b is the likelihood defined in Equation 1 evaluated with the best-fit values of the free
parameters (`sig = ˆ̀sig, W = Ŵ, )0 = )̂0, fC = f̂C ), Lb is the likelihood evaluated in the background-
only case (`sig = 0), while f̂C

Δ)
is a penalization term for short flares, with Δ) being the allowed time

range for )0. The penalization term accounts for the larger trial factor that should be associated to
short flares since a larger number of short flares than of long ones can be accommodated in a given
time range, as described in [13].

In order to estimate the significance of the best flare (with highest &) of each investigated
source, the&-value obtained for the given flare is compared to the test statistic distribution obtained
with background-only pseudo-experiments (PEs) at the corresponding source declination. The
fraction of background-like PEs with a value of the test statistic larger than the observed& gives the
significance (p-value) of the flare. The lowest obtained p-value identifies the most significant flare
of the search. Finally, a trial correction that accounts for the fact that many candidates have been
investigated is applied. In particular, the lowest obtained p-value is compared to the distribution of
the smallest p-values found when performing the same analysis on many background-only PEs.
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The expected performance of this approach in terms of discovery potential and sensitivity
as a function of the duration of the flare is shown in Figure 1. The performance of the time-
dependent approach is compared to the one of the the time-integrated analysis, i.e. when the time
information of the events is not considered, obtained using the same livetime [8]. While similar
levels of sensitivities are obtained in the investigated range of flare durations, the time-dependent
search performs better for flares shorter than ∼1000 days in terms of discovery potential, with an
improvement of a factor ∼2 achieved for flares as short as 1 day.
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Figure 1: 5f discovery potential (blue) and 90% C.L. sensitivity (orange) in terms of mean number of
signal events as a function of the simulated flare duration for the time-integrated analysis (dotted) and for the
time-dependent analysis (solid). The simulated source is at a declination of X = −40◦ and the flare is centered
at )0 [MJD] = 57000. Similar results are obtained for different source declinations and central times.

3. Results

The search applied to the 2774 radio-bright blazars results in the p-value distributions shown
in Figure 2. A pre-trial significance of over 3f for at least one of the tested time profile has
been obtained for seven sources, indicated in Figure 2 and listed in Table 1, together with the
corresponding best-fit values of the free parameters. The same source, J1500−2358, shows the
lowest pre-trial p-value using both time profiles. The pre-trial significance of 3.3f (3.4f) obtained
for the Gaussian-shape (Box-shape) assumption for J1500−2358 corresponds to a post-trial p-value
of 56% (40%). The weighted time distribution of the ANTARES events close to J1500−2358 is
shown in Figure 3. Only tracks (showers) within a distance of 5◦ (10◦) from J1500−2358 are
included in the plot. A higher weight is associated to events with smaller distance to the source and
larger value of the energy estimator.
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Figure 2: Distribution of the 2774 pre-trial p-values found at the investigated locations for the Gaussian-
shaped (top) and Box-shaped (bottom) signal time profile. The magenta arrow indicates the p-value corre-
sponding to a pre-trial significance of at least 3f. The name of the sources for which a pre-trial significance
of over 3f has been obtained for both profile assumptions (red), or at least for one time profile (orange for
Gaussian shape and green for Box shape) is reported above the corresponding p-value.

Table 1: List of radio-bright blazars for which a pre-trial significance of over 3f for at least one of the tested
time profile (Gaussian-shaped and Box-shaped) has been obtained. The first three columns report the name
and equatorial coordinates of the sources. The remaining columns summarise the results of the search in
terms of best-fit central time of the flare )̂0, flare duration f̂C , number of signal events ˆ̀sig, spectral index Ŵ

and pre-trial p-value, for the Gaussian-shaped and Box-shaped signal time profile. The sources with over 3f
pre-trial significance with both time profiles are highlighted in bold.

Source Results
Name X U Gaussian-shaped time profile Box-shaped time profile

)̂0 f̂C ˆ̀sig Ŵ p-value )̂0 f̂C ˆ̀sig Ŵ p-value
[deg] [deg] [MJD] [days] [MJD] [days]

J1500-2358 -24.0 225.2 55846 4 3.7 2.2 0.00041 55846 6 3.7 2.2 0.00031
J1517-4424 -44.4 229.4 57761 361 7.2 3.5 0.00084 57366 529 5.3 3.5 0.0099
J1606+2717 27.3 241.7 58793 1 1.0 1.1 0.00089 58267 538 1.2 1.3 0.0017
J1418-3509 -35.2 214.7 58119 12 3.6 3.3 0.00095 58119 14 3.8 3.3 0.00058
J0242+1101 11.0 40.6 56634 318 5.3 2.0 0.0011 56635 413 5.6 2.1 0.00040
J0732-0150 1.8 113.1 55794 82 4.9 3.5 0.0012 55813 117 5.2 3.5 0.00062
J0641-3554 -35.9 100.3 58084 16 3.0 3.2 0.0017 58080 18 3.0 3.2 0.0013
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Figure 3: Weighted time distribution of the ANTARES events close to the location of J1500-2358. The top
plot spans over the whole analysed time range, while the bottom plot shows the events within 3f̂C from )̂0
fitted with the Box-shaped profile. The green Box profile and the magenta Gaussian profile have been drawn
using the best-fit values of f̂C and )̂0 found in each case. Tracks (showers) are shown in blue (red).

3.1 The notable case of J0242+1101 (PKS 0239+108)

As a follow-up study of the findings of this analysis, the obtained best-fit neutrino flares have
been compared to the radio light-curves produced by the Owens Valley Radio Observatory [OVRO
14] for those sources of Table 1 for which radio data are available. The most interesting case is the
one of the blazar J0242+1101 with a typical parsec-scale core-jet structure. Its largest flare observed
in radio shows a notable overlap in time with the best-fit neutrino flare found in this analysis for the
same source, as shown in Figure 4. In view of this intriguing observation, the time distribution of
the public data of the Fermi W-ray telescope and of the IceCube neutrino telescope compatible with
the source direction have also been studied. The adaptive binned W-ray light-curve, obtained from
Fermi data using the method described in [15], for J0242+1101, is shown in Figure 4. Remarkably,
the most significant Fermi W-ray flare for this source happened during the flaring emission observed
in radio and the period highlighted by the present analysis of ANTARES neutrinos. Finally, the time
distribution of the IceCube tracks of the 10-year point-source sample [16] with direction compatible
with the blazar position within the 50% angular error reported by the IceCube Collaboration, is
also shown. Only events with an angular uncertainty smaller than 10 deg2 are depicted. While
there is not evidence of time clustering of the IceCube events, a muon-neutrino-induced track with
the notable high energy of 50 TeV was detected during the flare. A dedicated analysis will be
soon performed to estimate the chance probability of the association between radio, W-ray and
neutrino observations. It is also worth mentioning that J0242+1101 has been analysed with a

6
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time-independent approach in the 13-year ANTARES point-like source analysis [8], and was found
to be the most significant of the 121 investigated sources.
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Figure 4: Multi-messenger light-curves from the direction of the blazar J0242+1101 as a function of time,
since 2008. First plot: weighted time distribution of the ANTARES tracks (showers) within 5◦ (10◦) from
J0242+1101. The Gaussian profile has been drawn using the best-fit values of f̂C and )̂0 reported in Table 1.
Second plot: weighted time distribution of the IceCube tracks closer to J0242+1101 than their 50% angular
error. The applied weight corresponds to the energy of each event. The color scale indicates the event angular
distance from the source. Third plot: OVRO radio light-curve for J0242+1101. Fourth plot: adaptive binned
W-ray light-curve obtained from Fermi LAT data for J0242+1101.
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4. Conclusions

The result of a search for time and space clustering of ANTARES events from the direction of
2774 radio-selected blazars has been presented. The blazar list employed in this analysis corresponds
to the most up-to-date version of the catalog for which a promising directional correlation with
IceCube events has been recently reported [4, 5]. The analysis method is based on an unbinned
maximum likelihood approach, with generic Gaussian and Box profiles assumed for the signal time
emission. No significant neutrino flare has been found in the search. The lowest pre-trial p-value
is obtained for the blazar J1500−2358 using both time profiles, with a pre-trial significance of
3.3f (3.4f) obtained for the Gaussian-shape (Box-shape) assumption, corresponding to a post-trial
p-value of 56% (40%). A pre-trial significance of over 3f for at least one of the tested time profile
has been obtained for other six sources: J1517−4424, J1606+2717, J1418−3509, J0242+1101,
J0732−0150, and J0641−3554. Finally, the remarkable case of the blazar J0242+1101, showing an
intriguing overlap in time of the flaring emission in radio, W-ray and neutrino, has been reported.
The chance probability of the multi-messenger association is under study.
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