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1. Introduction

[1] studied cosmic-ray acceleration at nonrelativistic shocks using a tensor expansion of the
Vlasov equation, and they found a steepening of the cosmic-ray spectrum arising from energy
transfer from the cosmic rays to turbulence in the precursor of the shocks. Assuming the turbulence
in question is nonresonant, the so-called Bell mode [2], and taking an estimate for its energy density
at the saturation level,

*X� ≈
Esh
22
*cr, (1)

where Esh denotes the shock speed and*cr the energy density in cosmic rays immediately upstream
of the shock, they find a spectral steepening by

ΔB |Bell ≈
4
n

*X�

*cr
≈ 2
n

Esh
2
. (2)

Here n is the fraction of turbulent energy density that is in the form of magnetic field. For, e.g.,
Alfvén waves we have n = 0.5.

What of the uncertainties in the estimate? Does turbulence driving perhaps impose termination
of acceleration as opposed to a continuous spectral steepening? Which fraction of the observed
post-shock magnetic energy density is actually carried by Bell’s mode and not by provided by any
other process operating at the shock [e.g. 5]? Do the waves at the shock fully sample the cosmic-ray
energy loss or have the waves lost energy already in the upstream region? And is the analytically
estimated saturation level really relevant? Is there enough time for Bell’s mode to grow to very
high amplitude in the precursor of a shock, before the plasma arrives at the shock and the driving of
waves stops? For simplicity we consider cosmic rays with Lorentz factor Γcr. The peak growth rate
of the mode scales with the proton gyrofrequency, Ωp, or with the ion plasma frequency, lp,p, as

Wmax ' Ωp
Esh #cr
2 EA #p

= lp,p
Esh #cr
2 2 #p

, (3)

where EA denotes the Alfvén speed and # is the number density of cosmic rays (cr) or ambient
protons (p).

2. Time-dependent modeling of turbulence build-up

We shall explore two independent ways to estimate the energy transfer from cosmic rays to
turbulence. One will be a local consideration of turbulence driving in the precursor, the other one
an integral assessment of the energy transfer in the entire precursor. For simplicity we shall assume
that all ions in the cosmic rays and in the background plasma are protons, i.e. hydrogen nuclei. The
non-resonant and broadband character of Bell’s mode permits considering cosmic rays of a specific
energy as proxy for particles in a wide energy band.

2.1 Local estimate

The growth rate of wave energy density is proportional to the wave energy in the unstable wave
band,

¤* '
∫

3: W(:)
�2
:

4cn
. Wmax

(X�)2
4cn

, (4)
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where again n is the fraction of the wave energy that is carried by magnetic field, and X� is the
magnetic wave amplitude. Equation 4 indicates that most of the energy transfer arises when the
wave amplitude is high, meaning near or at saturation. Inserting Eq. 3 gives

¤* .
lp,p

n

#cr
#p

Esh
2
*X� . (5)

A gain in energy density of the waves is a loss in energy density of the driving cosmic rays. We can
estimate the energy-loss time per cosmic-ray particle as

gloss '
*cr
¤*
&

2nΓcr
lp,p

*bulk
*X�

23

E3
sh
, (6)

which evidently is independent of the number density of cosmic rays.
We shall now compare the energy-loss time (Eq. 6) with the acceleration time assuming

diffusive shock acceleration. Again expressing the diffusion coefficient of relativistic cosmic rays
in Bohm units, ^ = [2 AL/3, we rewrite equation (32) of Drury [4] as

gacc =
8 ^
E2

sh
=

8[Γcr
3Ωp

22

E2
sh
. (7)

[8] noted that for efficient magnetic-field amplification we can either write ^ with the far-upstream
magnetic field, �0, and [ < 1, or, alternatively, we can use the amplified field strength and [ ≈ 4.
In this paper we shall do the latter. The spectral index is B − 1 = gacc/gesc. Energy losses by driving
turbulence increase the effective acceleration time scale, leading to a softened spectrum

3#

3�
≈ Δ#
Δ�
' 1 − B

1 − gacc
gloss,eff

#

�
. (8)

The ratio of timescales in the denominator of eq. 8 must be less than unity, otherwise acceleration
is impossible. For a small ratio of acceleration time and loss time the resulting change of spectral
index can be written using the Alfvénic Mach number, "A = 2Ωp/lp,p, that is calculated with the
amplitude of the amplified field, i.e. without regard of direction,

ΔB .
2 (B − 1) [ "A

3 n
*X�

*bulk
. (9)

2.2 Global assessment

We shall now conduct a global assessment of the cosmic-ray energy loss incurred in the entire
upstream region. The spatial profile of cosmic-ray density in the so-called precursor is dominated
by the homogeneous solution to the spatial part of the transport equation,

#cr ' #cr,sh exp
(
−

∫ A

Ash

3A ′ E(A ′)
^(A ′)

)
, (10)

where E(A) is the upstream flow speed measured in the shock rest frame.
The cosmic-ray density profile also determines the acceleration timescale, because it depends

on the average separation of upstream cosmic rays from the shock, 〈A − Ash〉. In each acceleration
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cycle, cosmic rays enjoy a relative energy gain on the order of Esh/2 and need a few times 〈A −Ash〉/2
in time for it. Hence the acceleration time is a few times 〈A − Ash〉/Esh. If E and ^ were constant,
then

〈A − Ash〉 =
^

E
=

^

Esh
(11)

and we recover the usual gacc ∝ ^/E2
sh [4]. If E/^ would significantly decrease at A − Ash � 〈A − Ash〉,

then we would arrive at approximately the same conclusion, except that there might be some (weak)
escape toward the far upstream. If E/^ would significantly decrease already close to the shock, then
〈A − Ash〉 would be very large and may in fact become unbound, in which case many of the freshly
accelerated cosmic rays escape to the far upstream, and the cosmic-ray spectrum would be very
steep [3]. The rapid increase of volume with increasing A would contribute to the cut-off in the
spectrum of confined particles [7].

We shall now explicitly consider variations in the flow speed and hence write eq. 3 with E(A)
instead of Esh. Together with eq. 4 we can integrate the energy transfer rate over the entire precursor,
which for a plane-parallel shock means integration over A ,

¤�tot .
#cr,sh

8c n 2

∫ ∞

Ash

3A
lpp E(A) (X�(A))2

#p exp
(∫ A
Ash
3A ′ E (A

′)
^ (A ′)

) . (12)

Continuity mandates that lpp/#p ∝
√
E(A). We can scale the density and the flow speed to their

values at the thermal sub-shock, #p,sh and Esh, and pull these quantities out of the integral.
The energy density in the magnetic turbulence likely increases toward the shock on account of

turbulence driving, and so (X�(A))2 falls off with increasing A . The cosmic-ray scattering rate is
linked to the intensity of the turbulence, hence ^(A) will rise with increasing A . We shall write the
spatial profiles as

(X�(A))2 = (X�sh)2 1(A) ^(A) = ^sh : (A). (13)

Note that X�(A) may include small-: turbulence that is driven by cosmic rays of energies higher
than that of the particles whose energy losses we calculate. The diffusion coefficient increases
with energy, and so does the precursor length, implying that at any given location in the precursor
a particle sees turbulence that has been driven by cosmic rays of higher energy further out in the
precursor.

We shall now transform the variable of integration in the argument of the exponential in eq. 12,

G =

∫ A

Ash

3A ′
E(A ′)
^(A ′) , (14)

which then reads

¤�tot .
lpp,sh #cr,sh (X�sh)2 ^sh

8c n 2 #p,sh

×
∫ ∞

0
3G

√
E(G)
Esh

1(G) : (G) exp(−G), (15)

where 1(G) and : (G) are defined in eq. 13 and eq. 14. In the quasilinear limit ^ ∝ 1/(X�)2
is approximately true, meaning 1(G): (G) ≈ const, whereas for Bohmian scaling one expects
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1(G): (G) ∝
√
1(G), falling off with increasing G. In the general case, 1(G): (G) is at most constant,

but more likely a declining function, and so the integral in eq. 15 yields a numerical factor close to
unity.

The total energy-loss rate of cosmic rays in the precursor then is

¤�tot . *X�
#cr,sh

#p

[Γcr
3n

22

EA
, (16)

likewise the spectral steepening,

ΔB = (B − 1) 1
¤�acc
¤�tot
− 1
.

2 (B − 1)2 [ "A
3 n

*X�

*bulk
. (17)

3. Summary and Discussion

We calculated the energy-transfer rate from cosmic rays to non-resonant plasma waves in the
precursor of the forward shock of an SNR. Two different ways of calculation led to essentially the
same result for the softening of the particle spectra that is imposed by that energy transfer. It can be
related to the energy-density ratio of amplified turbulent magnetic field and bulk plasma flow. That
ratio is at most the inverse square of the Alfvénic Mach number of the thermal sub-shock, which
we write with the full turbulent field amplitude,

"A =

√
*bulk

*X� +*�0

. (18)

For turbulently amplified magnetic field,*X� � *�0 , the spectral steepening can hence be written
either with the Alfvénic Mach number of the sub-shock or with the energy density of the turbulent
field immediately upstream of the shock. The most important finding is then that for Bohm scaling
of diffusion in the precursor, [, the change in spectral index is invariably

ΔB .
2 (B − 1)2 [

3 n "A
=

2 (B − 1)2 [
3 n

√
*X�

*bulk
. (19)

Here B is the cosmic-ray spectral index without steepening and n is the magnetic fraction of the
turbulent energy density immediately upstream of the shock. In Figure 1 we show this constraint
as red exclusion area in a display of spectral softening vs. "A.

A consistency check is provided by mandating that in the steady state the wave-driving power
per unit shock area (eq. 16) must be at least as large as the escape flux through the shock, Esh*X�/n .
This yields an implicit lower limit on the cosmic-ray density that can be used to calculate the number
of exponential growth cycles available for Bell’s mode [6]. We find at least one half exponential
growth cycle for the nonresonant mode,

*cr ≥
6
[

*bulk
"A

⇒ #exp & 0.5. (20)

Evidently that condition is met for any significant growth of the mode. As the mode has to grow
from small fluctuations to a level X� � �0 , one would instead need at least ten exponential growth
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Figure 1: Exclusion limits for the spectral softening, ΔB, as function of the Alfvénic Mach number, "A,
assuming [ = 4 and n = 0.5. The red area marks violation of eq. 19. The cyan and blue areas are excluded
by eq. 22 for Esh*cr/2*bulk set to 10−3 and 4 · 10−3, respectively.

cycles. Interestingly, we recover ΔB |Bell ≈ 4*X�/(n*cr), i.e. the result of Bell et al. [1], if we
assume a cosmic-ray density that equals the right-hand side eq. 20. In that case #exp ' 0.5, meaning
there is no time for the mode to grow, and so the steady-state level *X�/*cr ≈ Esh/(22) cannot be
reached.

We calculated the level of spectral softening ignoring the condition :AL � 1 under which the
non-resonant mode can be driven. This relation can for X� � �0 be rephrased as

Esh
42

*cr
*X�

� 1. (21)

This condition requires that the left-hand side be much larger than unity, but how much larger? Let
us conservatively suppose that is it larger than or equal to two, and inserting that into eq. 19 we find

ΔB .
(B − 1)[
3
√

2 n

√
Esh
2

*cr
*bulk

. (22)

This condition is also visible in Figure 1 for two rather high values of Esh and*cr.
In conclusion, we find and show in Figure 1 that even for very efficient cosmic-ray acceleration,

for which [ ≈ 4, and the highest magnetic-field amplification that is allowed for Bell’s mode,
the spectral softening appears to be moderate, ΔB . 0.1, and it is negligible for standard SNR
parameters. As we explicitely allow for spatial variation in the cosmic-ray precursor, the shock
speed, Esh, in Eq. 22 is that of the thermal subshock, not that in the far-upstream frame. This
statement is based on the energy transfer that can be accomplished within the time available, and it
does not assume that a certain saturation level of the wave energy density is reached.
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