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1. Introduction

CP-violating (CPV) processes provide very sensitive probes for new physics as they are highly
suppressed in the Standard Model. New sources of CPV beyond the Standard Model appear to be
necessary if the matter-antimatter asymmetry in the Universe is explained by baryogenesis, which
requires CPV at a level much higher than predicted by the Standard Model according to current best
estimates. Direct CP-violation in kaon decays is particularly strongly suppressed, and as a result
was only observed comparatively recently – in the late-1990s – by the NA48 [2] and KTeV [3]
experiments in the decay of neutral kaons into two pions. The current world average of the measure
of direct CPV in K → ππ decays, ε ′, is [4]

(1)Re(ε ′/ε) = 16.6(2.3) × 10−4

where ε is the measure of indirect CP-violation, itself heavily suppressed: |ε |= 2.228(11) × 10−3.
In order to take advantage of this precise experimental result, a correspondingly precise Stan-

dard Model prediction is necessary. Unfortunately, while the underlying physics occurs at the
weak interaction scale, O(80) GeV, these processes receive large corrections from low-energy non-
perturbative physics at the O(250) MeV hadronic energy scale, hence it was only recently that a
reliable first-principles calculation of ε ′ has been performed [5]. This 2015 calculation was per-
formed by the RBC & UKQCD collaborations using lattice QCD, the only known ab initio and
systematically improvable method – one for which all of the systematic errors can be identified and
improved and/or eliminated with sufficient computational expense – for computing non-perturbative
processes. The value obtained,

(2)Re(ε ′/ε) = 1.38(5.15)(4.59) × 10−4

where the errors are statistical and systematic respectively, is 2.1σ below the experimental value.
Spurred by the hint of a tension between the lattice prediction and the experimental number and
an unexplained discrepancy between the predicted value of the I = 0 ππ scattering phase shift at
the kaon mass (a necessary component of the calculation) and the dispersive prediction, we have
since endeavored to improve our calculation by significantly increasing the statistics, incorporating
more sophisticated techniques for removing excited state systematic effects in our matrix element
fits, and also to reduce our dependence on perturbation theory at low energies in the matrix element
renormalization. As a result of this effort we have now resolved the discrepancy in the ππ phase
shift and have produced a new value with a factor of two smaller statistical errors and more reliable
systematic error estimates [1]:

(3)Re(ε ′/ε) = 21.7(2.6)(6.2)(5.0) × 10−4 .

Here the third error quoted is an estimate of the effects of isospin-breaking and electromagnetism.
This result is now in good agreement with the experimental number.

In this document we summarize the techniques and measurements that comprise this most
recent calculation and discuss the results in more detail, and then follow this by a description of our
current efforts and future plans for further improving the calculation.
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2. Calculation overview

The lattice calculations are performed with degenerate up and down quarks, resulting in an
isospin-symmetric theory in which ε ′ can be expressed directly in terms of the difference in the
complex phases of A0 and A2, the amplitudes of neutral kaons decaying into ππ states of isospin
I = 0 (∆I = 1/2) and I = 2 (∆I = 3/2), respectively,

(4)ε ′ =
iωei(δ2−δ0)
√

2

(
ImA2
ReA2

−
ImA0
ReA0

)
,

where ω = ReA2/ReA0 and δI are the ππ scattering phase shifts. We work in three-flavor QCD (i.e.
without a charm quark), in which the underlying weak interaction Hamiltonian is expressed to first
order in the weak effective theory as a series of ten four-quark operators Qi and the corresponding
Wilson coefficients zi, yi that encapsulate the high-energy contributions:

(5)HW =
GF
√

2
V∗udVus

10∑
i=0

[zi(µ) + τyi(µ)]Qi(µ)

where τ = − V ∗t sVt d

V ∗usVud
and the scale µ indicates that theWilson coefficients and operator are renormal-

ization scheme dependent (while their product is not). The lattice calculation requires evaluating
this effective Hamiltonian between a kaon initial state and a two-pion final state in the appropriate
isospin representation:

(6)AI = 〈(ππ)I |HW |K0〉 .

Aside from the usual difficulties of performing a lattice calculation – tuning ensembles and operators,
gathering sufficient statistics, etc – the evaluation of these matrix elements involves a number of
additional challenges:

1. On a conventional lattice, the three-point functions from which the matrix elements are
extracted by fitting the large-time behavior, are dominated by an unphysical, energy non-
conserving decay amplitude between a kaon of mass ∼500 MeV and two pions at rest with
an energy of ∼260 MeV. It is therefore necessary to either attempt to extract a subdominant
contribution from already noisy data, or to exploit some other technique to remove this
unphysical contribution. We discuss this in more detail below.

2. Due to the compression of the two-pion final state by the finite box size, these matrix elements
obtain substantial finite-volume corrections. Fortunately, the dominant, power-law compo-
nent of this correction can be computed very precisely in the form of the Lellouch-Lüscher
factor [6] F, leaving only small, exponentially-suppressed contributions as a remaining sys-
tematic error. The computation of F requires knowledge of the derivative of the ππ phase
shift with respect to energy which must be either computed on the lattice or obtained from
the dispersive analysis of experimental data.

3. The bare latticematrix elements are divergent andmust be renormalized (into the same scheme
as the Wilson coefficients) prior to removing the lattice cutoff. Unfortunately the MS scheme
in which the Wilson coefficients are conventionally computed is not amenable to a non-
perturbative treatment on the lattice, hence we must first renormalize into an intermediate
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non-perturbative renormalization (NPR) scheme – in our case the regularization-invariant
momentum schemes (RI-SMOM) – before matching perturbatively to MS. In order to avoid
large perturbative truncation effects it is necessary to perform this matching at as high of
a scale as possible while maintaining sufficient separation from the lattice cutoff to avoid
discretization effects.

The calculation of the I = 0 amplitude introduces further complexities:

1. Some of the the diagrams entering this amplitude contain loops in which two of the legs of
the four-quark operator contract together, resulting in a quadratic divergence regulated by the
lattice cutoff. While this divergence is not present in the case of exactly energy conserving
kinematics, in practise this condition can only be achieved approximately through careful
tuning, and therefore it is advantageous to remove it directly by defining subtracted operators

(7)Qi → Qi − αi s̄γ5d

where the coefficients αi are defined through a suitable condition:

(8)〈0|
{
Qi(t) − αi(t)[s̄γ5d](t)

}
OK (0)|0〉 = 0 ,

where OK (0) is an operator that creates an incoming kaon state. This subtraction offers
the additional benefit of suppressing excited state matrix elements that would otherwise be
enhanced by their non-energy conserving kinematics even if the primary matrix element of
interest were exactly energy conserving.

2. The I = 0 final state has vacuum quantum numbers, hence we must perform an explicit
subtraction to remove the contribution of the vacuum intermediate state. The vacuumquantum
numbers also mean that it is necessary to evaluate disconnected diagrams, which are typically
very noisy and therefore require advancedmethods and large statistics to achieve a good signal.

3. I = 2 calculation

The ∆I = 3/2 decay is generated by three linear combinations of Qi that are conventionally
labeled by their transformation properties under chiral SU(3)L × SU(3)R: the (27, 1) combination is
the domininant contribution to ReA2, and the (8, 8) and (8, 8)mx, where mx indicates the operator is
color-mixed, are the domininant contributions to ImA2. The measurement of A2 was first performed
by the RBC & UKQCD collaborations in 2012 [7, 8] on a single lattice with physical pion masses
and a somewhat coarse inverse lattice spacing of a−1 = 1.378(7) GeV, but with a correspondingly
large physical volume to offer good control over residual finite-volume effects. This was later
followed in 2015 by a calculation on two larger lattices with inverse lattice spacings of 1.730(4)
GeV and 2.359(7) GeV and a continuum extrapolation performed [9]. We will focus on the latter
calculation in this summary.

The calculation was performed using Möbius domain wall fermion (MDWF) ensembles of
sizes 483 × 96 × 24 (labeled 48I) and 643 × 96 × 12 (labeled 64I), where the last dimension is the
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extent of the fifth dimension, Ls. We used the Iwasaki gauge action with β = 2.13 and β = 2.25 for
the 48I and 64I ensembles, respectively, and the Möbius scale was α = b + c = 2.0 for both. More
details on these ensembles can be found in Ref. [10].

In order to achieve physical kinematics we exploited the ability to modify the lattice boundary
conditions (BCs) and used antiperiodic spatial BCs for the valence down quarks. As a result of
this change, all charged pions become antiperiodic in each of the directions in which these BCs are
applied, and their minimum allowed momentum in those directions rises from 0 (for periodic BCs)
to ±π/L where L is the lattice size. By tuning L and the number of directions in which antiperiodic
BCs are applied one can then match the ground-state energy of the two charged pion system to that
of the kaon, such that the matrix element of interest becomes the ground-state contribution rather
than an excited state. In order to take advantage of this we use the isospin symmetry to relate the
K0 → (ππ)I=2

I3=0 decay of interest to the unphysical amplitude K+ → π+π+ in which both pions are
charged. This also allows us to ignore the fact that these BCs break the isospin symmetry; the π+π+

state is the only doubly-charged state in the system and is therefore prevented from mixing with
other operators by charge conservation.

The renormalization was performed using the RI-SMOM(/q, /q) and RI-SMOM(γµ, γµ) inter-
mediate schemes [11] and the perturbative matching to the MS scheme peformed at 3 GeV. The
RI-SMOM(/q, /q) result was used for the central value and the other scheme was used to estimate the
systematic error.

The results obtained for the real and imaginary components of the amplitude are

(9)ReA2 = 1.50(4)(14) × 10−8 GeV

(10)ImA2 = −6.99(20)(84) × 10−14 GeV

where the errors are statistical and systematic, respectively. The former is in good agreement
with the experimental value of ReA2 = 1.4787(31) × 10−8 GeV from charged kaon decays and
1.570(53) × 10−8 GeV from neutral kaon decays.

As we can see above, the results are very precise for this amplitude, with < 1% statistical
errors despite having performed a continuum extrapolation. The systematic error is much larger
and is completely dominated by perturbative truncation errors in the NPR matching to MS (8%)
and in the Wilson coefficients (12%). The latter is exacerbated by the fact that perturbation theory
is being used to match the four and three-flavor theories across the charm threshold at 1.3 GeV
where perturbation theory is less reliable.

4. The ∆I = 1/2 rule

It has long been observed experimentally that the decay of the neutral kaon into an I = 0 final
state is around 500× more likely than to an I = 2 state. This ∆I = 1/2 rule is reflected in the ratio

1
ω

=
ReA0
ReA2

= 22.45(6) , (11)

the inverse of which enters directly as a coefficient in the determination of ε ′, Eq. 4. While around
a factor of two in this ratio of amplitudes can be shown to arise from the perturbative running of
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Figure 1: The two dominant contributions C1 and C2 to ReA2 and their sum on the 48I (left) and 64I (right)
ensembles, reproduced from Fig. 11 of Ref. [9].

the Wilson coefficients from the weak to the charm scale, the origin of the remaining factor of 10
has been a longstanding puzzle with no widely accepted explanation.

The (27, 1) operator, which as mentioned above is the dominant contribution to Re(A2), is
computed on the lattice as the sum of two contractions C1 and C2. Naïve color counting suggests
that C2 ≈ 1/3 C1, but in our calculation we found C2 ≈ −0.7 C1; i.e. they have opposite signs and
nearly equal magnitudes. This results in a strong cancellation, illustrated in Fig. 1, that dramatically
suppresses ReA2. Note that this phenomenon is much less pronounced for simulations with heavier
pions [18]. By combining our continuum result for ReA2 with our latest determination of ReA0
described below, we obtain

1
ω

=
ReA0
ReA2

= 19.9(5.0) (12)

which is completely consistent with the experimental number. We therefore conclude that the
∆I = 1/2 rule is a consequence of low-energy QCD.

5. First I = 0 calculation

The I = 0 amplitude receives contributions from all ten effective four-quark operators. The real
part is dominated by the current-current operator Q2 and the imaginary part by the QCD penguin
operator Q6 and to a lesser extent Q4. The first calculation of the I = 0 amplitude was performed in
2015 [5] using a single lattice with essentially the same parameters as the ensemble used in the first
calculation of A2: We used 216 configurations of an MDWF ensemble of size 323 × 64 × 12 with
Möbius parameter α = b + c = 32/12, physical pion masses and the Iwasaki+DSDR gauge action
with β = 1.75 corresponding to an inverse lattice spacing of a−1 = 1.378(7) GeV. Again this choice
of lattice represents a compromise between having good control over residual finite-volume effects
at the cost of increased discretization errors from the coarse lattice spacing, while maintaining
a lattice size that is computationally feasible (significantly more statistics are needed for the A0
calculation than the A2 due to the disconnected diagrams).

To achieve physical kinematics for the ground-state matrix element we again exploit the lattice
boundary conditions. Unfortunately, for the I = 0 case there is no way to avoid the isospin breaking
introduced by imposing antiperiodic BCs on the down quark, nor is there a way to cast the problem

6
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in terms of only charged pion states. Instead we utilize G-parity boundary conditions [12] in
which the two light quark flavors undergo a charge conjugation and isospin rotation at the lattice
spatial boundary. Both the charged and neutral pion states are negative eigenstates of the G-parity
operation and the finite-volume action respects the isospin symmetry, hence when applied as a
boundary condition we again achieve the raising of the ground-state pion momentum to ±π/L but
for all pion states and without breaking isospin. This comes at a cost however: the Dirac operator
in this setup is explicitly two-flavor, hence the computational cost of inverting the quark propagator
is doubled; the fact that up-quark fermion operators can contract with down-quark antifermion
operators and vice versa through a quark line that passes through the boundary adds significant
complexity to the structure of the Wick contractions; and due to the presence of disconnected
diagrams in the I = 0 case it is also necessary to generate custom ensembles with G-parity BCs
on the sea quarks to avoid unitarity breaking effects. We used G-parity BCs in all three spatial
directions resulting in a ππ ground-state energy that matches the kaon mass to within 2%.

The increased statistical errors induced by the disconnected diagrams were controlled through
a combination of large statistics and by utilizing the all-to-all propagator framework [13] which
allows for the convenient use of arbitrarily smeared operators – in our case 1s hydrogenwavefunction
sources – whose properties can be tuned to maximize the overlap with the ππ state of interest and
minimize the overlap with the vacuum. The two-pion source comprised two single-pion operators
with back-to-back Fourier momentum of (±1,±1,±1)π/L (with a total momentum of zero), and we
averaged over all orientations to project onto the s-wave rotational state. The vacuum contribution
was further reduced by separating the single-pion operators in the ππ source by 4 timeslices. We
refer to this as the ππ(111) operator below.

The NPR was again performed using the RI-SMOM(/q, /q) and RI-SMOM(γµ, γµ) intermediate
schemes, with the former taken for the central value. In this case the matching to perturbation
theory was performed at a lower scale of µ = 1.529 GeV as necessitated by the lower lattice cutoff,
thus increasing the perturbative truncation error relative to the A2 case.

For this 2015 calculation we obtained the following results for the real and imaginary compo-
nents of the amplitude,

(13)ReA0 = 4.66(1.00)(1.26) × 10−7 GeV

(14)ImA0 = −1.90(1.23)(1.08) × 10−11 GeV .

The former agrees with the experimental result of ReA0 = 3.3201(18) × 10−7 GeV. Here the much
larger relative statistical error on the imaginary part is caused primarily by a large cancelation
observed between the dominant Q4 and Q6 contributions. The systematic error is again dominated
by perturbative truncation errors.

Combining the results for A0 and A2 we found

(15)Re(ε ′/ε) = 1.38(5.15)(4.59) × 10−4 ,

which is 2.1σ below the experimental value, and the total error roughly 3× the experimental error.
It is clear that this is now a quantity that is accessible to lattice QCD, and our focus since that time
has been on improving the statistics and better understanding our systematic errors.

7
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6. The "ππ puzzle"

In order to reliably compute K → ππ amplitudes on the lattice it is essential to have good
control over the two-pion system. We measure ππ − ππ two-point functions and from these
extract the energies and the overlaps between our ππ operators and the ground and excited ππ

states, both of which are used directly to extract the matrix element from the K → ππ three-point
functions. The ground-state energy is also used to compute the ππ phase shift using the Lüscher
prescription [14], which is required to obtain ε ′ via Eq. (4). In the 2015 calculation we obtained a
value of δ0(Eππ ≈ mK ) = 23.8(4.9)(1.2)◦ which is substantially smaller than the prediction of ∼39◦

obtained by combining the dispersive Roy equations with experimental input [15].

0 2 4 6 8 10 12 14
t

0.34

0.35

0.36

0.37

0.38

0.39

0.40

Eef
f

Figure 2: The ππ effective energy obtained using 1438 configurations with the ππ(111) operator.

In order to better understand this discrepancy, following the 2015 calculation we dramatically
increased our statistics from 216 to 1438 configurations, but rather than improving the agreement we
found an even lower value of 19.1(2.5)◦ [16]. The effective mass plot for this ππ two-point function
is shown in Fig. 2. While this result was stable under varying the fit ranges and also with two-state
fits, the rapid error growth visible in the figure suggests that the most likely origin of the discrepancy
is due to nearby excited states whose presence is masked by the rapid degeneration of the signal.
To resolve this issue we expanded our two-pion operator basis, incorporating two additional ππ
operators: the ππ(311) operator in which the two constituent pions are again moving back-to-back
as in the ππ(111) case, but here with the next allowed momenta (±3,±1,±1)π/L and permutations
thereof; and the scalar σ = 1√

2
(ūu + d̄d) operator, which also has vacuum quantum numbers and

thus projects onto the I = 0 ππ state. By varying the source and sink operator we are then able
to construct a 3 × 3 (symmetric) matrix of correlation functions that can be fit simultaneously to
determine the energies of multiple states and the overlaps of the operators with those states. As we
will demonstrate below, this technique is much more powerful than merely fitting the large time
dependence of the two-point functions from a single operator.

Using the three ππ operators detailed above we repeated our calculation of A0 on 741 con-
figurations of the same ensemble [1]. In Fig. 3 we show the result for the ππ ground-state energy
obtained by varying the fit range, the number of operators and the number of states in the ππ two-
point function fits. The 1-operator, 1-state result in this figure is equivalent to the fits performed

8
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Figure 3: The I = 0 ππ energy obtained by varying the lower bound on the fit range tmin, the number
of operators and number of states. In the legend Oa, Ob , Oc correspond to the ππ(111), ππ(311) and σ
operators, respectively. Our best fit is the 3-operator, 2-state result with tmin = 6.

in our 2015 calculation, and again we see an apparent plateau at tmin = 6 or 7; however in adding
further operators we see a marked shift in the fitted energy to lower values as well as a dramatic
improvement in the quality of the plateau and the statistical error, thus demonstrating the presence of
excited state contamination. This figure also exemplifies the power of the multi-operator technique,
providing a much larger reduction in the statistical error than would be obtained for the same cost
merely by increasing statistics. For our final result we obtained

(16)δ0(471 MeV) = 32.3(1.0)(1.4)◦ .

This result is in much better agreement with the dispersive prediction at this energy of 35.9◦,
hence we conclude that the discrepancy with the dispersive result was indeed due to excited state
contamination and that the issue has now been resolved. For more details on the fits to the two-point
functions and our procedures for estimating the systematic errors, as well as an expansion of the
phase shift determination to moving-frame ππ operators with lower center of mass energies, we
direct the reader to our companion paper, Ref. [16]. Note that the result above is reproduced from
Ref. [16] and has a systematic error that differs slightly from the earlier result given in Ref. [1]; this
difference is sufficiently small that it has no significant impact on the determination of ε ′.

7. Improved determination of A0

The K → ππ matrix elements are obtained by fitting to three-point functions of the form

(17)Ci(t, tK→snk
sep ) = 〈0|O†snk(tK→snk

sep )Qi(t)OK (0)|0〉

where OK is the kaon operator, Osnk one of the ππ operators and Qi are the (subtracted) weak effec-
tive operators. Wemeasuredwith five different source-sink separations tK→snk

sep ∈ {10, 12, 14, 16, 18}
and Qi is inserted on all intervening timeslices. We simultaneously fit over all tK→snk

sep and choice
of Osnk, and apply cuts on the minimum time separation tmin between the kaon and the four-quark
operator, as well as the minimum time separation t ′min between the four-quark operator and the ππ

9
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sink, where t ′ = tK→snk
sep − t. For this improved calculation we also use 741 configurations of the

same ensemble used in our 2015 calculation.
For plotting purposes we define an effective K → ππ matrix element,

(18)
Meff,snk

i (t ′) = Ci(t, tK→snk
sep )

(
1
√

2
AK A0

snke−mK te−E0(tK→snk
sep −t)

)−1

= M0
i +

∑
j

Aj
snk

A0
snk

M j
i e−(Ej−E0)t′ .

where AK and mK are the ground-state kaon operator-overlap coefficient and mass, respectively,
and Aj

snk and Ej are the operator-overlap and energy of the ππ ground and excited states. These
results are obtained from their respective two-point function fits. We apply a uniform cut of tmin = 6
to ensure that only the kaon ground state contributes. These effective matrix elements converge to
the desired matrix elements M0

i at large t ′.
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Figure 4: The effective matrix elements of the Q2 and Q6 operators for the ππ(111), σ and optimal operators
as a function of the time separation t ′ between the four-quark operator and the ππ sink operator.

In order to demonstrate the effect of the additional ππ operators on the matrix elements we
further define an optimal operator Oopt = ∑

i riOsnk,i where ri are chosen based on the results of the
ππ two-point function fits to maximize the overlap of this operator with the ground state. For our
best fit with three operators and two states, this correlator matrix is not square hence there is no
unique definition of ri; however Fig. 3 shows that the vast majority of the improvement is obtained
from just the ππ(111) and σ operators. We therefore compute ri from the 2 × 2 correlator matrix
with these operators and two states. In Fig. 4 we show the effective matrix elements of Q2 and
Q6, which are the dominant contributions to the real and imaginary parts of A0, respectively, for
the ππ(111), σ and optimal sink operators. As we saw for the ππ fits, the introduction of more
operators results in a clear and marked improvement in both the statistical errors and on the quality
of the plateau.

We varied the number of operators, states and the temporal cuts in order to probe the excited
state errors and to obtain our best fit. In Fig. 5 we plot the results of those fits. In the Q2 case we find
good agreement between all of the fits for t ′min ≥ 4, although we see improved statistical errors with
the additional operators. However for Q6 we see a clear pattern of excited state contamination in
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Figure 5: The fitted ground-state matrix elements of the Q2 and Q6 operators for various choices of the
number of operators, number of states and the cut tmin between the kaon and four-quark operators, as a
function of the cut t ′min between the four-quark operator and the ππ sink. In the legend “a × b” indicates the
fit was performed with a operators and b states, and “opt.“ indicates the optimal operator was used. In the
two-operator case we drop the ππ(311) operator and in the one-operator case we further drop the σ. The
”sys.“ results are obtained using three operators and three states for both the ππ and K → ππ fits and is used
in the systematic error estimation. The values are shifted for clarity.

the one and two-operator fit results, the latter converging later than the former as we would expect.
The final best fit for all operators was obtained with three operators and two states with t ′min = 5
and tmin = 6. The best fit from the 2015 calculation would correspond here to the ”1 × 1 tmin = 6“
point with t ′min = 4, which we see is very different from our new best fit; unfortunately this implies
that our ≤ 5% estimate for the excited state contamination in our 2015 calculation was significantly
underestimated.

Alongside the additional ππ operators, another significant improvement in this updated calcu-
lation is the use of step-scaling [17] to circumvent the limit imposed by the coarse lattice spacing on
the largest renormalization scale that can be used for the NPR. This procedure involves computing
the step-scaling matrix

ΛRI(µ2, µ1) = ZRI←lat(µ2)
[
ZRI←lat(µ1)

]−1 (19)

on a finer ensemble, where µ1 is a scale accessible to the coarse ensemble, µ2 > µ1 is a scale
accessible to the fine ensemble, and ZRI←lat(µ) is the RI-SMOM NPR matrix. ΛRI therefore
encapsulates the non-perturbative running of the renormalization factor, and has a well defined
continuum limit. In principle this continuum limit should be taken to remove discretization errors on
ΛRI but these effects are small and can be neglected assuming it is computed on a fine enough lattice.
We then compute ZRI←lat(µ1) on the coarse ensemble and apply ΛRI to raise the renormalization
scale,

ZRI←lat(µ2) = ΛRI(µ2, µ1)ZRI←lat(µ1) . (20)

For this calculation we used the “32Ifine” ensemble described in Ref. [10], which has a−1 =
3.148(17) GeV, and used µ2 = 4.006 GeV and µ1 = 1.53 GeV. As we will show below, the adoption
of this higher scale resulted in a factor of three reduction in our NPR systematic error.
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8. New results for A0 and ε′

For our new calculation we find [1]

(21)ReA0 = 2.99(0.32)(0.59) × 10−7 GeV

(22)ImA0 = −6.98(0.62)(1.44) × 10−11 GeV

The former agrees well with the experimental result ReA0 = 3.3201(18) × 10−7 GeV and with our
previous result. The value for ImA0 differs substantially however, which gives rise to a similarly
large change in ε ′:

(23)Re(ε ′/ε) = 21.7(2.6)(6.2)(5.0) × 10−4 ,

which is now in good agreement with the experimental number. In Ref. [1] we perform a detailed
study of the origin of the difference between our new and old calculations and determine that it
is primarily driven by the excited state contamination discussed in the previous section, which is
removed by introducing additional operators and increasing t ′min from 4 to 5.

We now discuss the systematic error budget. The third set of parentheses in Eq. 23 gives
an estimate of the effects of isospin breaking (IB) and electromagnetism (EM), which for ε ′ are
significantly enhanced over their typical percent-scale size because of the 20× suppression of A2 by
the mechanics of the ∆I = 1/2 rule increasing the relative effect of EM+IB on this term. This 23%
systematic error is the largest single contribution to our budget and is presently estimated using
next-to-leading order chiral perturbation theory with some input from the 1/Nc expansion [19].

A detailed discussion of the remaining systematic errors and their estimation can be found in
Ref. [1]. Below we focus on the dominant systematic errors of the 2015 calculation and describe
how they have changed in our updated result:

• The discretization error resulting primarily from the use of a single, somewhat coarse a−1 =
1.38 GeV lattice spacing in the determination of A0. We estimate 12% for this error based on
the continuum extrapolation behavior of the ∆I = 3/2 operators, and this remains unchanged
from our 2015 calculation.

• The error on the perturbativeWilson coefficients. For the 2015 calculation we estimated 12%
for this error by comparing the results with leading and next-to-leading order perturbation
theory. In the new calculation we might have hoped that raising the RI→ MS matching scale
from 1.53 GeV to 4 GeV would improve this error, but in fact we have deduced that the bulk
of the error arises from the use of perturbation theory to match the 3- and 4-flavor theories
across the charm threshold, which is performed at mc ≈ 1.3 GeV before running up to 4 GeV
in the 3-flavor theory. Thus we continue to estimate a 12% contribution for this source of
error.

• The error on the NPR resulting from using perturbation theory to match between the RI and
MS schemes. By studying the behavior of the difference between the results obtained with the
RI-SMOM(/q, /q) and RI-SMOM(γµ, γµ) intermediate schemes as a function of the matching
scale, we conclude that this error has reduced from 15% on our 2015 calculation to just 5%
as a result of using step-scaling to increase the matching scale to 4 GeV.

12
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• The error on the Lellouch-Lüscher factor F arising from the uncertainty in the derivative of
the I = 0 ππ phase shift as a function of energy. Due to our greatly improved understanding
and confidence in the behavior of the ππ system, and the fact that we are able to independently
compute this derivative purely from the lattice (albeit with somewhat large errors), we reduced
this systematic error from 12% to 1.5%. The reader should note that the above derivative is
a subdominant contribution to F with the majority arising from a known analytic function,
hence this 1.5% error actually arises from a 12% variation in the derivative.

• Excited state contamination in the I = 0 K → ππ and ππ − ππ correlation function fits. In
the 2015 calculation, owing the to the stability of the fits and the clear apparent plateau, we
assigned a ≤ 5% error to this source. However, as we have described above, this error was
significantly underestimated. By introducing more ππ operators and increasing statistics we
have obtained much more reliable results and conclude that the excited state contamination
is now negligible in comparison to our other error sources.

9. Outlook

Since the publication of the updated calculationwe have started preparing for future calculations
to further improve statistics and address our remaining systematic errors. The most important
are the effects of isospin breaking and electromagnetism, which together contribute our dominant
systematic error and for which the uncertainty may be large due to the reliance on chiral perturbation
theory and the 1/Nc expansion. Unfortunately, significant theoretical and computational hurdles
must be overcome before a lattice calculation of these effects becomes possible, primarily related
to the treatment of the long-range electromagnetic interactions in a finite box. A popular technique,
QEDL , allows for the treatment of QED on the lattice by explicitly removing the zero modes from
the photon propagator, at the cost of introducing new 1/L power-law finite-volume corrections that
must be determined. We are investigating [20] an alternate technique whereby Coulomb gauge is
used to separate the QED interaction into a static Coulomb potential component and a component
involving only transverse photons. The static potential is truncated to a finite range R and placed
on the lattice, incurring 1/R corrections that can be computed analytically using infinite volume
perturbation theory. Additional workwill be required to include the transverse photon contributions.
A potential difficulty for application to K → ππ is the fact that these QED approaches are not clearly
compatible with G-parity boundary conditions where the boundary changes up into down quarks
and vice versa, thus breaking charge conservation.

Another significant systematic error arises due to the use of perturbation theory to match across
the charm threshold between the four flavor theory and the three flavor theory in which we simulate
the decay. This can be circumvented by performing a simulation in the four-flavor theory directly,
but the combined requirement of fine lattice spacings to control charm discretization effects and
large physical volumes to control finite volume errors puts this out of the reach of the present
generation of supercomputers. We are investigating an alternative approach [21, 22] whereby the
Wilson coefficients relating the three and four flavor theories are computed non-perturbatively by
evaluating suitable ratios of renormalized Green’s functions containing the three and four-flavor
weak effective operators on the same three flavor lattice (i.e. neglecting charm sea effects) at
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energies much below the charm quark mass, µ � mc. One of the major difficulties of this
calculation is in finding a renormalization scheme suitable for evaluation at such low energy scales;
in this regime the RI-SMOM schemes tend to become very noisy and mixing occurs with a tower of
gauge-noninvariant operators entering due to the reliance on gauge fixing. For this calculation we
are investigating the use of position-space renormalization techniques which do not require gauge
fixing.

The most significant pure-lattice systematic error is due to the determination of A0 on only
a single, rather coarse ensemble. We estimated the size of these effects by studying the scaling
dependence of the three operators entering the I = 2 amplitude, for which continuum results are
available. However it is not clear the extent to which this estimate is reliable due to the different
physics pertaining to the I = 0 amplitude. To address this issue we are proceeding down two
complementary avenues. The dramatic impact of the multiple operator technique for isolating the
physical K → ππ matrix element from the contributions of nearby ππ states has reopened the
question of whether it is possible to perform a similarly precise calculation of A0 using regular
periodic boundary conditions rather than G-parity BCs. This offers a number of advantages such
as not requiring the generation of custom ensembles, a factor of two lower computational cost
in evaluating quark propagators and a significant amount of computational effort (such as the
determination of eigenvectors) can be shared with other projects, at the cost of the physical matrix
element becoming a subdominant contribution to the three-point Green’s functions. It also serves
as a valuable cross-check of our G-parity result. We are presently performing an exploratory
calculation on two ensembles [23], the first the 323 × 64 domain wall fermion ensemble with
physical pion masses, periodic BCs and a−1 ≈ 1.4 GeV that was used for our original calculation
of A2 [7, 8] (our current calculation of A0 is performed on a lattice with the same parameters and
G-parity BCs) and the second a coarser 243 × 64 ensemble with a−1 ≈ 1 GeV.

We are also looking to leverage the computational power of the new generation of supercom-
puters presently coming online to directly extend our G-parity calculation with additional lattice
spacings. To this end we have developed code using the Grid [24, 25] library to perform gauge
field generation with G-parity boundary conditions that is optimized for calculation on GPUs, and
have commenced the generation of two new ensembles on the Perlmutter machine: a 403 × 64
lattice with a−1 ≈ 1.7 GeV and a 483 × 64 lattice with a−1 ≈ 2.1 GeV. The parameters of these
ensembles were carefully chosen to maintain the same physical volume – and hence ππ energy –
as our present calculation, thus ensuring a physical decay. Like our existing calculation, both of
these ensembles use Möbius DWF for which discretization effects enter at O(a2) and higher, hence
we will obtain a factor of two lever arm in the a2 continuum extrapolation with a third intermediate
point to demonstrate linear scaling.

10. Conclusions

We have completed an update to our 2015 calculation of the measure of direct CP-violation in
K → ππ decays, ε ′, with 2× smaller statistical errors andmore robust and reliable systematic errors.
Notably we have achieved much greater control over errors resulting from the contribution of nearby
ππ excited states in our matrix element fits by including multiple ππ operators in a simultaneous
fit to more reliably extract the ground-state dependence, and have reduced the systematic error
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arising from the truncation of the perturbative series used in matching our non-perturbative lattice
renormalization scheme to the MS by a factor of three using step-scaling. We obtain a result that
is in good agreement with the experimental value and a total error ∼3.6× that of the experiment.
We also perform an ab initio computation of the ratio ReA0/ImA2 which is compatible with the
experimental value, thus explaining the decades-old puzzle of the origin of the ∆I = 1/2 rule
enhancement of this quantity as a consequence of non-perturbative QCD.

We believe that ε ′ remains a promising avenue in which to search for new physics, and we have
detailed in this document our ongoing plans and ambitions to achieve an increased precision which
may reveal these effects.
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