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Figure 1: An illustration of the deficit an-
gle around an edge. Here the lattice is a
three-dimensional cubic lattice, whose hinges are
edges.

Figure 2: A tetrahedron. This is a closed sur-
face with positive curvature. The hinges are the
vertices, and there are three equilateral triangles
around each hinge.

1. Introduction

To begin discussing hyperbolic spaces we must first define what curvature means on a lat-
tice. We will think of the lattice as being composed of zero-dimensional objects (vertices), one-
dimensional objects (edges), etc. up to 𝐷-dimensional objects. For constant curvature spaces there
are three cases to point out. Those are: flat, positive, and negative curvature. These three cases can
be distinguished by their deficit angles,

𝛿ℎ = 2𝜋 − 𝑛ℎ × \𝐷 , (1)

where 𝛿ℎ measures a deviation from flat. Here 𝑛ℎ is the number of 𝐷-dimensional gons around a
(𝐷 − 2)-dimensional “hinge”, ℎ, and \𝐷 is the angle between (𝐷 − 1)-dimensional faces attached
to ℎ. We can see that if the total amount of space contained in the gons surrounding a hinge is
greater than 2𝜋 we have a negatively curved lattice. In contrast, if the number of 𝐷-gons around a
hinge is less than 2𝜋 the curvature is positive. And of course if the deficit angle is zero the lattice
is flat. Figure 1 shows an example of flat space in three dimensions, with four cubes around the
“hinge”—an edge—and how the deficit angle is measured around that edge. To solidify the concept
we will demonstrate three situations where each lattice is constructed from the same elements, but
each possesses a different deficit angle, and hence different curvatures.

The first example is that of a tetrahedron. Figure 2 shows an illustration of the lattice. This
is a positively, closed surface built entirely of equilateral triangles. In this case, \2 = 𝜋/3, and the
hinge is a vertex. Each vertex possesses three 2-gons around it, i.e. 𝑛ℎ = 3. Using these values in
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Figure 3: A section of a flat triangular lattice.
This surface is open. The hinges are at the
vertices, and there are six equilateral triangles
around each hinge.

Figure 4: A section of a negatively curved tri-
angular lattice. This surface is open. The hinges
are at the vertices, and there are seven equilateral
triangles around each hinge.

Figure 5: The Poincaré disk projection of the {3, 7} lattice. While in this view the edge lengths appear
different as one moves to the boundary, this is simply a consequence of the projection.
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Figure 6: Several figures showing the addition of layers on the order-5 cubic honeycomb lattice. Because of
the excess of cubes around an edge, the number of boundary vertices grows exponentially. This view is the
Poincaré ball projection, where the lattice is mapped inside the unit ball.

the deficit angle gives 𝛿ℎ = 2𝜋 − 3(𝜋/3) = 𝜋 which is a positive value. Notice this is the same for
every vertex on the lattice.

The second example is shown in Fig. 3, which is an excerpt from a lattice. Here again the
lattice is built from the same objects—equilateral triangles. \2 = 𝜋/3 as before, however in this
case 𝑛ℎ = 6. Using these values for the deficit angle we find 𝛿ℎ = 2𝜋 − 6(𝜋/6) = 0. This is a flat
(triangular) lattice. The deficit angle here is the same for every vertex.

Finally we give an example of a negatively curved lattice. This can be seen in Fig. 4, where we
again consider just an excerpt of a greater lattice. The lattice is comprised of equilateral triangles
with \2 = 𝜋/3 again. Here 𝑛ℎ = 7 which, based on the previous example is the minimal increase
which will take the deficit angle negative. We find 𝛿ℎ = 2𝜋 − 7(𝜋/3) = −𝜋/3 indicating negative
curvature. Since this deficit angle is found at every lattice vertex, the lattice takes on a hyperbolic
saddle shape. A larger image of the negatively curved lattice shown here can be seen in Fig. 5. The
particular view in Fig. 5 is a projection of the hyperbolic lattice into the unit disk. This projection
shortens the edge lengths as one approaches the boundary of the space. This is a consequence of
the projection. The original lattice’s edges are all the same length, and it is made up of equilateral
triangles.
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Lattices can be specified compactly with a specific notation called a Schläfli symbol. The
Schläfli symbol is specified by a collection of positive integers in curly brackets, {𝑝, 𝑞, 𝑟, . . .}. This
is read in english as “𝑝-sided polygons, 𝑞 of them around each vertex, 𝑟 of those around each edge,
etc.”. For the case in Fig. 5 the lattice is given by {3, 7} because there are 3-sided polygons, seven
of them around each vertex.

The fact that there are excess 𝐷-gons (in the sense that there are more than the flat case) around
a hinge provides, perhaps, unexpected behavior for the lattice. Because of this the size of the
boundary grows exponentially as more layers of 𝐷-gons are added. This implies that the boundary
of the lattice possesses a number of points which is a constant fraction of the the total number of
points in the lattice. In this way the boundary never becomes “negligible”, since the contribution
of volume from the boundary does not vanish as the total volume increases, rather it approaches a
constant fraction of the total. Figure 6 shows a hyperbolic cubic lattice as successively more layers
are added onto it. The Fig. 6 lattice is a {4, 3, 5} lattice, with three squares around each vertex, and
five cubes around each edge. We will examine the effect the {3, 7} and {4, 3, 5} lattices have on
matter fields in the following sections.

2. Including fields

In this section we will consider scalar fields—both the free and interacting cases—on hyperbolic
lattices. In the continuum the free, massive scalar field action is written,

𝑆cont =

∫
𝑑2𝑥

√
𝑔

1
2
(𝜕`𝜙𝜕`𝜙 + 𝑚2

0𝜙
2). (2)

This action gets straight-forwardly transcribed to the lattice in the form,

𝑆lat =
∑︁
𝑥,𝑦

𝜙𝑥𝐿𝑥𝑦𝜙𝑦 (3)

where 𝐿𝑥𝑦 is a matrix, and the lattice version of the Klein-Gordan operator, which couples nearest-
neighbor, and on-site fields. The explicit form of this matrix is,

𝐿𝑥𝑦 = 𝑞𝑥𝛿𝑥𝑦𝑚
2
0 − 𝐴𝑥𝑦 (4)

with 𝐴𝑥𝑦 the adjacency matrix for the lattice, 𝑞𝑥 the coordination number at site 𝑥, and 𝑚0 the bare
mass. The simple lattice form of the action gives the lattice propagator immediately. The two-point
correlator is given as

𝐶 ( |𝑥 − 𝑦 |) = 𝐿−1
𝑥𝑦 , (5)

the matrix inverse of 𝐿.
For the case of the interacting theory we consider a truncated scalar field in the form of the

Ising model. The lattice action has the form,

𝑆lat = −𝛽
∑︁
〈𝑥𝑦〉

𝜎𝑥𝜎𝑦 − ℎ
∑︁
𝑥

𝜎𝑥 (6)
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where 𝛽 = 1/𝑇 and ℎ are the nearest-neighbor coupling (inverse temperature) and external field,
and the field 𝜎 takes on only two values, ±1. The two-point correlation function for this theory is
given in the usual way,

𝐶 ( |𝑥 − 𝑦 |) = 〈𝜎𝑥𝜎𝑦〉 − 〈𝜎𝑥〉〈𝜎𝑦〉, (7)

where the angled brackets are considered an ensemble average.
There has been work on including scalar fields on hyperbolic lattices in the past. Initial work

focused on the existence of a phase transition and the critical temperature, and in fact evidence
was presented that there are multiple phase transitions [1, 2]. Later work considered the critical
exponents for the Ising model in both two and three dimensional hyperbolic lattices [3–7], and it
was argued that the critical exponents are mean-field.

In addition a very thorough study of correlation functions and a continuum limit was carried
out in Ref. [8]. The authors focused on 𝜙4 theory and considered two- and four-point correlation
functions. They looked at the large- and small-mass limits, and considered a refinement of the
hyperbolic lattice in order to recover a continuum hyperbolic manifold.

Here we draw attention to Ref. [9], which is the basis for this plenary talk. In this paper
the authors considered a free massive scalar field on both two- and three-dimensional hyperbolic
lattices. In the case of two dimensions, they considered multiple different tessellations of H2. They
found power-law correlations in the two-point function on the 𝑑 = 1 and 𝑑 = 2 boundaries of the
two- and three-dimensional spaces, respectively. Moreover, the power-law correlations obeyed the
Klebanov-Witten formula [10] precisely, despite the finite lattice spacing, and finite volume of the
lattice.

3. Expectations

Having defined the field theories let us discuss limiting cases, and what is known generally
to be expected in these cases. For the free field, continuum, boundary two-point propagator it is
predicted that the propagator should decay like a power,

𝐶 (𝑟) ∝ 𝑟−2Δ± . (8)

In fact the power-law behavior is known explicitly,

2Δ± = 𝑑 ±
√︃
𝑑2 + 4𝐿2𝑚2

0 (9)

where 𝑑 is the boundary dimension, 𝐿 is the radius of curvature, andΔ± are two different powers that
depend on the boundary conditions at infinity. From this we see the rate of decay is only dependent
on the dimension of spacetime, the bare mass, and the radius of curvature of the hyperbolic space.

Looking at the interacting case, consider the high-temperature expansion for the Ising model
two-point correlation function,

𝑍 ∝
∑︁
{Γ}

tanhΓ(𝛽), (10)
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Figure 7: Boundary-to-boundary correlation func-
tions as a function of angular distance around the
disk. Correlators for several bare masses are plot-
ted. The apparent linear form is indicative of a
power-law in the log-log scale used here.
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Figure 8: The powers from power-law fits to the
correlators in Fig. 7 versus the bare mass. A fit is
plotted along with the data which agrees well with
the Klebanov-Witten formula.

which is a weighted sum over all possible closed, intersecting loops, Γ. If we consider the case of the
correlation between two boundary points, we find the leading-order contribution to the correlation
function goes like,

𝐶 (𝑅) ∝ tanh𝑅 (𝛽) = 𝑒− log(coth 𝛽)𝑅 (11)

where 𝑅 is the geodesic through the bulk. This makes it clear that at least at high-temperature,
the correlation function is expected to be exponential through the bulk. However, if cast in terms
of the boundary distance, we see 𝑅 ∝ log 𝑟,1 where 𝑟 is the distance between the points along
the boundary. Using this relation between bulk and boundary distance we find, in terms of 𝑟 , the
correlator obeys,

𝐶 (𝑟) ∝ 𝑟− log(coth 𝛽) . (12)

We find power-law dependence for the boundary correlator, and moreover we see the limiting
dependence on 𝛽 for the power.

4. Results

Having considered some general results and limiting cases for the scalar field on a hyperbolic
lattice, we now present results. In Fig. 7 we see actual two-point correlator data for several bare
masses in the case of the free scalar field on a {3, 7} lattice. The data is plotted on a log-log scale,
and displays linear behavior indicative of a power-law. The 𝑥-axis has been recast in terms of the
angular distance around the boundary. This is because this form fully takes into account the finite
lattice boundary volume. The data can just as well be plotted in term of the boundary distance 𝑟 ,
with finite-volume effects evident at long-distances.

1Note that the proportionality factor is dependent on the type of tessellation of hyperbolic space used. Here we will
take it to be 1 for simplicity. The overall functional form of the correlator is unchanged by this choice.
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Figure 9: The powers from a power-law fit to the boundary spin-spin correlation function for the Ising
model. The high-temperature (small 𝛽) data obeys a linear relationship w.r.t. log(tanh 𝛽), which is consitent
with the high-temperature expansion results.
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Figure 10: Boundary-to-boundary correlation
functions as a function of angular distance on the
sphere. Correlators for several bare masses are
plotted. The apparent linear form is indicative of a
power-law in the log-log scale used here.
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Figure 11: The powers from power-law fits to the
correlators in Fig. 10 versus the bare mass. A fit is
plotted along with the data which agrees well with
the Klebanov-Witten formula.

From the two-point correlation function data we extract a power as a function of the bare mass.
A plot of the power, Δ, as a function of the bare mass is shown in Fig. 8. We fit the data to the
predicted form from the Klebanov-Witten formula,

Δ = 𝐴 +
√︃
𝐴2 + 𝐵𝑚2

0 (13)

where 𝐴 and 𝐵 are fit parameters. We find 𝐴, and 𝐵 match the analytic formula well.
For the Ising model, we extract the power-law behavior from the boundary spin-spin correlation

function. We expect at small 𝛽 to find the correlator,

𝐶 (𝑟) ∼ 𝑟 log(tanh 𝛽) . (14)

Figure 9 shows the power Δ as a function of log(tanh 𝛽). We see for small 𝛽 the expected linear
relationship between the two, which is emphasized with a linear fit.

The previous results were in two dimensions. We now consider the free massive scalar field
on a three-dimensional hyperbolic lattice. The lattice is the order-5 cubic honeycomb lattice, or a
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{4, 3, 5} lattice. In Fig. 10 the boundary two-point correlation function is shown for several bare
masses. Again, the correlator is plotted versus the angular distance along the boundary, in log-log
coordinates. We find linear behavior indicative of a power-law. The power laws extracted from the
correlator fits at different masses can be seen in Fig. 11. Again we see the data obeys the same
functional form as the Klebanov-Witten formula, with relatively good agreement between the fit
parameters and their theoretically predicted values.

5. Conclusions & Future work

Because of the observed power-law behavior of the boundary two-point correlation function
on a hyperbolic lattice, the holographic idea that the boundary of a hyperbolic space supports a
conformal field theory appears to survive a lattice discretization. In this case, we see from the high-
temperature expansion that this power-law dependence can be traced back to exponential growth of
the boundary of the lattice in comparison to the bulk. In addition to the power-law behavior, the
specific nature of the power-law is one that follows the predicted Kelbanov-Witten formula closely.

Possible new directions include further studies in both two and three dimensions where the
boundary theories would be conformal in one, and two dimensions respectively. It would be
interesting to include other matter fields, like fermions, or gauge fields. A more difficult task, but
an admirable one, is to attempt to identify the specific effective action for the conformal boundary
theory from the bulk-boundary Monte Carlo data. We leave these questions to be addressed in
future work.
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