
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and
ARM architectures

Yoshifumi Nakamura0,∗
0RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan

E-mail: nakamura@riken.jp

The supercomputer "Fugaku" was jointly developed by Fujitsu Limited and RIKEN, and is the
latest supercomputer installed at the RIKEN Center for Computational Science in Kobe, Japan. In
the recent TOP500, HPCG, HPL-AI, and Graph500 benchmark rankings, it has been ranked No.
1 in the world for four consecutive terms. The CPU installed in Fugaku is a 48-core + 2 assistant
core processor called A64FX, which is an extension of the Arm v8-A instruction set architecture
for high-performance computing, and was developed by Fujitsu as the processor for Fugaku. The
CPU consists of four "core memory groups" (CMGs) of 12 cores, and the L2 cache is shared
by the 12 cores in the CMG. The main memory per node is 32GiB. The interconnect is a Tofu
interconnect D. We will present an overview of Fugaku, development of LQCD code for A64FX
and its performance, and large-scale benchmark results on Fugaku.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:nakamura@riken.jp
https://pos.sissa.it/

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

1. Introduction

As described in the full paper[1] on the large-scale benchmark test of lattice QCD on the
supercomputer Fugaku (hereinafter referred to as Fugaku), we explain the specification of Fugaku
and introduce a brief overview optimization for quark solver and the results of the benchmark tests.
We also present the development status of lattice QCD software on A64FX.

2. Fugaku

Fugaku is a new japanese supercomputer developed by RIKEN and Fujitsu, which is the
successor of the supercomputer K (hereinafter referred to as K). In the recent TOP500, HPCG,
HPL-AI, and Graph500 benchmark rankings, it has been ranked No. 1 in the world for four
consecutive terms (June 2020, November 2020, and June 2021, November 2021) [2]. It has a total
of 432 racks with a total of 158976 nodes (384 nodes × 396 racks + 192 nodes × 36 racks). One
node has one A64FX processor [3] and 32 GiBmain memory (four 8 GiB High BandwidthMemory
2). The peak memory bandwidth per node is 1024 GB/s. The node has two external interfaces,
one is computational network called Tofu interconnect D (TofuD) [4] and another is PCIe Gen3
16 lanes. The node topology is (X, Y, Z, a, b, c) : (24, 23, 24, 2, 3, 2). The combination of
XYZabc can be used to create a 3-dimensional torus. It can also perform fast allreduce using Tofu’s
hardware barrier function, but only up to three floating-point numbers and eight integer numbers.
Link bandwidth is 6.8 GB/s. Injection bandwidth is 40.8 GB/s. Concurrent communications with
6 RDMA engines are available. L2$ misses may be reduced by cache injection which is a function
to write received data directly to L2$.

The A64FX processor has designed based on Armv8.2-A instruction sets with the Scalable
Vector Extension (SVE). A64FX has 48 cores for compute and two or four assistant cores for OS
services. It consists of four Core Memory Groups (CMG) connected by ring bus. Each CMG
has 12 compute cores which share L2 cache. Two operating frequency modes of normal 2.0 GHz
and boost 2.2 GHz are available on Fugaku. While the specification of the Armv8.2-A with SVE
allows hardware developers to select a vector length from 128 to 2,048 bits, the 512-bit-width
SIMD arithmetic units had been chosen on Fugaku. The processor supports out-of-order execution
of instructions. Other specifications are summarized in Table 1. Pictures for CPU die A64FX, Tofu
interconnect, Tofu unit, and rack of Fugaku are shown in Fig. 1.

3. QWS

We have developed “Lattice quantum chromodynamics simulation library for Fugaku with
wide SIMD” (QWS [5]) to get high performane for computing quark solver on Fugaku. It is an open
source software on github. The QWS library contains not only the optimized linear solver for quark
solver but also may functions such as the sparse-matrix-vector multiplication routines or linear-
algebra routines for quark fields, which can be used as building blocks of algorithms developed by
the library users. As a practical example, we introduce the use in the multi-grid solver algorithm
implemented in the Bridge++ code set in which the domain-decomposed Clover-Wilson operator in
QWS is called alternatively to the original code and achieves considerable acceleration [6]. While

2

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

Table 1: A64FX CPU Specifications. TF denotes TFLOPS. Cache performance is at normal mode of 2.0
GHz.

description
Architecture Armv8.2-A SVE (512 bit SIMD)
Core 48 (+ 2 or 4 assistant cores)
Perfromance double prec. single prec. half prec.
Normal mode 3.072 TF 6.144 TF 12.288 TF
Boost mode 3.3792 TF 6.7584 TF 13.5168 TF
Cache L1D/core: 64 KiB, 4way, 256 GB/s (load), 128 GB/s (store)

L2/CMG: 8 MiB, 16way
L2/node: 4 TB/s (load), 2 TB/s (store)
L2/core: 128 GB/s (load), 64 GB/s (store)

Memory 32 GiB, 1024 GB/s
Interconect TofuD (28 Gbps × 2 lane × 10 port)
PCIe Gen3 16 lanes
Technology 7nm FinFET

Figure 1: Pictures for CPU die of A64FX, Tofu interconnect, Tofu unit, and rack of Fugaku

3

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

the convention of the gamma-matrix and data layout are different in QWS and Bridge++, they are
properly converted before and after the QWS functions are called.

We also expect that QWS provides a working example of the optimization techniques for
A64FX architecture. While the quantitative evaluation of the components of QWS is specific to the
fermion operator and execution setup, the improved implementation is generic and applicable to the
other kinds of fermion operators as well as to many ingredients of LQCD simulations. Indeed in the
multi-grid solver in [6] the other ingredients, such as the fermion operator on the coarse lattice and
the inter-process communication, are accelerated by partly referring to the QWS implementation.

4. Tuning quark solver on Fugaku

To get high performance on Fugaku, effective SIMD vectorization with 512 bits wide SIMD
is very important. The original code used for Fugaku co-design was tuned for narrow SIMD
width which was used in HPC architectures in early 2000s. On K, the data layout for complex
number, (Real-Imag)-(Real-Imag)-..., was used since the SIMD width was 128 bits and operations
for complex numbers were supported. In the case of wide SIMD width in recent HPC architectures,
a different optimization like for vector computers in 1990s is needed. We employ the following real
number data layout (C-style array or Row major order),

Fugaku(double) : [nt] [nz] [ny] [nx/8] [3] [4] [2] [8] ,
Fugaku(single) : [nt] [nz] [ny] [nx/16] [3] [4] [2] [16] ,

Fugaku(half) : [nt] [nz] [ny] [nx/32] [3] [4] [2] [32] ,
cf. K : [nt] [nz] [ny] [nx] [3] [4] [2] ,

(1)

where nt, nz, ny, nx are the local domain lattice size in t,z,y,x directions, respectively. nx is divided
and packed to the SIMD of Fugaku. The factor 3 sized rank corresponds to the color index, the 4
sized rank to the spin index, and the 2 sized rank to the complex real-imaginary index. We used
the complex number data major layout on K. For Fugaku, we layout continuous x site index first by
blocking to fit with 512 bits wide SIMD vector. We optimize the x–direction calculation by using
Arm C Language Extensions (ACLE) [7]. For the stencil computation in the x–direction, the vector
element shift operation is required. Instead of shifting data on vector registers, we utilize vector
load with mask operation (named predicate operation) functionality of SVE. Fig 2 is a schematic
picture of the x–direction shift for double precision data layout by using two load operations with
predicate registers and one XOR operation.

We also have applied other general optimizations, e.g., removing temporal arrays, manually
prefetching explicitly 256 B for all arrays by software prefetch, OMP Parallel region expansion that
we put “omp parallel” on higher level caller routines because making omp parallel region is costly.
This is important on many core architectures.

A function __mult_clvs, which corresponds to local matrix multiplication of inverted clover
term, is used in ddd_in_s_, jinv_ddd_in_s_, and ddd_out_s_. We found that a naive im-
plementation of __mult_clvs was inefficient due to load and store operations caused by register
spill/fill. It is difficult for the compiler to calculate the optimal instruction schedule for such a large
computation. However, we found a pattern on the code that allows an efficient schedule. Then, we

4

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

0 1 2 3 4 5 6 7 8 9 a b c d e f

Color
Spin

Spin
Re Im

X coordinate

Different
color/spin/Im

1 2 3 4 5 6 7 8

2 Masked loads with
predicate resiters

2 SIMD registers

1 2 3 4 5 6 7 8
X-dir shifted data
on SIMD register

Merge 2 registers by XOR

Figure 2: X–direction shift by using two load operations with predicate registers and one XOR operation for
data layout in double precision.

reordered the operations at the source code level. Fig. 3 is the outline of the original code. The
blocks starting with the red line share four values. So by arranging the rows of these blocks in a
round robin fashion, we can minimize the interval of value reuse and get instruction-level paral-
lelism. Fig. 4 is the the optimized code, where 16 streams of chained FMA (Fused Multiply-Add)
operations are executed in a round robin fashion. Since the FMA latency is 9 and the number of
the FMA pipelines is 2, 18 independent operations are required to fill the pipelines. Therefore, the
theoretical efficiency of this code is 89 % (=16/18). In addition, the schedule allows for the reuse of
register values at short intervals; the number of registers required does not exceed 32 (the number of
registers in the architecture). Since each loaded value is reused once, the number of FMAs and loads
are equal. Since the FMA and load pipelines are also equal in number, the load pipeline will not
become a bottleneck. We prevented undesired compiler optimization, which is common subexpres-
sion elimination for long-distance reuse, by splitting blocks with if statements. We also specified
the compiler flags that suppress instruction scheduling (-Knosch_post_ra -Knosch_pre_ra
-Knoeval). We confirmed that these optimizations reduced the number of spills from the original
512 to the optimized 14.

The above is an overview of the optimization in computational cores and CMGs. On the other
hand, optimization of communication is also very important to improve the performance. LQCD
needs nearest neighbor stencil communication between surface sites. To minimize communication
time, we adopt the double buffering algorithm and implement it by using the uTofu API library to
directly use the RDMA engine called Tofu Network Interface (TNI) instead of the MPI communi-

5

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

void __mult_clvs(rvecs_t sc[3][4][2], rvecs_t a[2][36]) {
rvecs_t x[2][6][2];
rvecs_t y[2][2];

for (int c=0;c<3;c++){
for (int ri=0;ri<2;ri++){
for (int v=0;v < VLENS; vv++){
x[0][0+c][ri].v[v] = sc[c][0][ri].v[v] + sc[c][2][ri].v[v];
x[0][3+c][ri].v[v] = sc[c][1][ri].v[v] + sc[c][3][ri].v[v];
x[1][0+c][ri].v[v] = sc[c][0][ri].v[v] + sc[c][2][ri].v[v];
x[1][3+c][ri].v[v] = sc[c][1][ri].v[v] + sc[c][3][ri].v[v];

}
}

}

for (i=0;i<2;i++){
for (int v=0;v < VLENS; vv++){
y[i][0].v[v] = a[i][0].v[v] * x[i][0][0].v[v] +

a[i][6].v[v] * x[i][1][0].v[v] +
a[i][8].v[v] * x[i][2][0].v[v] +
a[i][10].v[v] * x[i][3][0].v[v] +
a[i][12].v[v] * x[i][4][0].v[v] +
a[i][14].v[v] * x[i][5][0].v[v] -
a[i][7].v[v] * x[i][1][1].v[v] -
a[i][9].v[v] * x[i][2][1].v[v] -
a[i][11].v[v] * x[i][3][1].v[v] -
a[i][13].v[v] * x[i][4][1].v[v] -
a[i][15].v[v] * x[i][5][1].v[v];

y[i][1].v[v] = a[i][0].v[v] * x[i][0][1].v[v] +
a[i][6].v[v] * x[i][1][1].v[v] +
a[i][8].v[v] * x[i][2][1].v[v] +
a[i][10].v[v] * x[i][3][1].v[v] +
a[i][12].v[v] * x[i][4][1].v[v] +
a[i][14].v[v] * x[i][5][1].v[v] +
a[i][7].v[v] * x[i][1][0].v[v] +
a[i][9].v[v] * x[i][2][0].v[v] +
a[i][11].v[v] * x[i][3][0].v[v] +
a[i][13].v[v] * x[i][4][0].v[v] +
a[i][15].v[v] * x[i][5][0].v[v];

}
}

for (int v=0;v < VLENS; vv++){
sc[0][0][0].v[v] = y[0][0].v[v] + y[1][0].v[v];
sc[0][0][1].v[v] = y[0][1].v[v] + y[1][1].v[v];
sc[0][2][0].v[v] = y[0][0].v[v] - y[1][0].v[v];
sc[0][2][1].v[v] = y[0][1].v[v] - y[1][1].v[v];

}

T
h
e
 s
a
me

pa
t
te
rn

f
ol
l
ow
s
 b
y
 6
 t
i
m
es

Figure 3: __mult_clvs before optimizations.

cation library. The uTofu interface has lower latency than that of MPI and they can be used together
in an application, so that global operations such as reduction for vector inner-product are processed
by MPI functions while the nearest neighbor 1-to-1 communications are done by uTofu. The details
are described in our paper[1].

4.1 Optimization of process mapping and TNI allocation

To minimize neighbor communication in a large-scale benchmark test using the entire Fugaku
system, it is not enough to simply use double buffering and uTofu, but it is necessary to perfectly
map the MPI processes of 4D QCD to the Tofu of 6D mesh torus, and specify the links and TNI that
each neighbor communication uses. This subsection describes a method for searching for process
mapping and TNI allocation. This method searches a configuration that minimizes the transfer
message length of the Tofu link or TNI. In the following explanation, the space of process allocation

6

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

Accumulation Registers :16

Load Registers : 4 (Max: 8)

Load Registers : 8

load/store for accumulation
compiler optimization with meaningless if-statement
block

1st Block

2nd Block

Figure 4: __mult_clvs after optimizations.

is expressed as {)1,)2, . . . ,)=},

)8 = (C8 , B8 , >8 , ℎ8) ,
C8 ∈ {TX,TY,TZ,TA,TB,TC, IN_NODE} ,
B8 ∈ N , >8 ∈ {torus,mesh} , ℎ8 ∈ N ,

(2)

where)8 is the respective axis of the network, C8 denotes the physical axis of Tofu (when multiple
processes are allocated to one node, the axis is expressed as IN_NODE), B8 is the length of)8 , >8 is
torus if the coordinates at both ends of)8 are adjacent to each other, otherwise it is mesh, and ℎ8 is
the distance between the adjacent coordinates in the)8 axis as viewed in the C8 axis. For example, a
physical X-axis of length 24 (24 being the entire system, it is torus) is represented as (TX, 24, torus,
1).

The physical X-axis of length 24 is hypothetically divided into the axes TXc of length 2 and
TXd of length 12, and the coordinate G of TX corresponds to the coordinate [G mod 2] of TXc and
the coordinate [G/2] of TXd. they are (TX, 2,mesh, 1) and (TX, 12, torus, 2), respectively.

Step 1 For the input Tofu physical shape, enumerate the combinations of at most two divisions for
each physical axis. In other words, for all B1 and B2 satisfying B = B1 × B2 for a physical axis
C of length B and tortuosity >, enumerate {(C, B1,mesh, 1), (C, B2, >, B1)}, where if either B1 or
B2 is 1, then {(C, B, >, 1)}.

7

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

Step 2 For each physical axis, select one from those listed in Step 1 and combine them. Then, list
all the combinations as %2. For example, when the lengths of the physical X, Y, and Z axes
are 24, 22, and 24, respectively, an example of ?2 ∈ %2 is {(TX, 24, torus, 1), (TY, 11, mesh,
2), (TY, 2, mesh,1), (TZ, 8, torus, 3), (TZ, 3, mesh, 1), (TA, 2, mesh, 1), (TB, 3, torus, 1),
(TC, 2, mesh, 1), (IN_NODE, 4, mesh,1)}.

Step 3 If all the elements of %2 have already been processed, terminate the algorithm. For ?2 ∈ %2,
which has not yet been selected, select and combine axes to make a torus from ?2, and list
the possible combinations assigned to each axis of the process partition. That is, when the
lengths of the four axes of the process partition are (=1, =2, =3, =4) and we assign the following
axes�8 , enumerate all combinations of (�1, �2, �3, �4).

�8 = {(C8,1, B8,1, >8,1, ℎ8,1), . . . , (C8,=, B8,=, >8,=, ℎ8,=)} ⊂ ?2 , (3)

where �8 satisfies =8 ≤
∏
9 B8, 9 , and two or more C8, 9 exist except for IN_NODE or >8, 9 =

torus exists. We assume that the torus passing through =8 vertices can be constructed
even if =8 is even and

∏
9 B8, 9 (except 9 for which C8, 9=IN_NODE) is odd. We can also

exclude combinations where there are 9 , : such that C8, 9 = C8,: , since they are equivalent
to combinations that do not split that physical axis. For example, for an axis with process
number 6, we can assign {(TY, 2,mesh, 1), (TZ, 3,mesh, 1)}. Let %3 be the result of the
enumeration.

Step 4 If all elements of %3 have already been processed, return to Step 3. For ?3 ∈ %3 that has
not yet been selected, compute the corresponding � of the message length to be transferred
for each combination of the Tofu axis and the LQCD axis of process division. The elements
of � are

(C, @, 3, <) ∈ � , C ∈ {TX,TY,TZ,TA,TB,TC, IN_NODE} ,
@ ∈ {QX,QY,QZ,QT} , 3 ∈ {plus,minus, both} , < ∈ N ,

(4)

where C is the physical axis, @ is the axis of process division of LQCD, 3 is the direction
of transmission as seen in the axis of process division, and < is the message length. The
following substeps are used to calculate � for the next assignment to the process partition
axis @.

{(C1, B1, >1, ℎ1), . . . , (C=, B=, >=, ℎ=)} (5)

Step 4.1 On the @-axis, find the number of inter-node communication processes =inter and the
number of intra-node communication processes =intra per node. Set the overall number of
processes per node as =. If C8 = IN_NODE, =@ = B8; otherwise, =@ = 1. In this case

=inter =
=

=@
, =intra =

(=@ − 1) × =
=@

. (6)

Step 4.2 Assign the length of the message sent per process at the @-axis to <@. When C8 ≠

IN_NODE, let (C8 , @, both, =inter × <@ × ℎ8) ∈ �. Multiply by ℎ8 to include transfers to other
nodes due to hops. If C8 = IN_NODE, then (IN_NODE, @, both, =intra × <@).

8

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

Step 5 For � obtained in Step 4, calculate the total transfer message length for each Tofu physical
axis, where IN_NODE is excluded. The total transfer message length for physical axis C is
the sum of < for all (C, @, 3, <) ∈ �. If the best value among them exceeds the best value
from other assignments obtained so far, return to step 4.

Step 6 For � obtained in Step 4, list the possible combinations of the six TNI assignments. For
a physical axis C, when (C, @8 , both, <8) ∈ �, we can use either Step 6a or 6b to assign TNI
0, 1 (0 = 1 is also acceptable). These methods satisfy the restriction that, from the point of
view of a Tofu link, there is only one TNI that uses the Tofu link. Let �0, �1 be the set of
communications assigned to 0, 1, respectively. Since there is no need to distinguish each of
the six TNI, we can express = {(� ′1, =1), . . . , (� ′<, =<)} instead of (�1, . . . , �6), where =8 is
the number of 9 for which � ′

8
= � 9 . In this way, when choosing the TNI to assign, we can

reduce it to | | ways.

Step 6a When C is IN_NODE, or when there is exactly one axis of @8 that communicates in
both directions in one adjacent communication (i.e., when there is one 8 such that @8 ∈
{QY,QZ,QT}), assign (C, @8 , plus, <8) ∈ �0, (C, @8 , minus, <8) ∈ �1 or (C, @8 , minus, <8)
∈ �0, (C, @8 , plus, <8) ∈ �1 to each different @8 . This means that in the former case,
�0 is used for communication in the positive direction of @8 , regardless of the direction
of C, and �1 is used for communication in the negative direction of @8 , regardless of the
direction of C. When @8 = QX and 0 = 1, the communication of @8 never occurs in both
directions at the same time, so only one of plus or minus shall be assigned. For example,
when {(C,QX, both, <G), (C,QY, both, <H)} ⊂ �, the following assignments can be made
respectively.
A) {(C ,QX, plus, <G) , (C ,QY, plus, <H) } ⊂ �0 , {(C ,QX,minus, <G) , (C ,QY,minus, <H) } ⊂ �1
B) {(C ,QX, plus, <G) , (C ,QY,minus, <H) } ⊂ �0 , {(C ,QX,minus, <G) , (C ,QY, plus, <H) } ⊂ �1
C) {(C ,QX,minus, <G) , (C ,QY, plus, <H) } ⊂ �0 , {(C ,QX, plus, <G) , (C ,QY,minus, <H) } ⊂ �1
D) {(C ,QX,minus, <G) , (C ,QY,minus, <H) } ⊂ �0 , {(C ,QX, plus, <G) , (C ,QY, plus, <H) } ⊂ �1

In this case, “A and D” and “B and C” are the same if 0, 1 are swapped, respectively, so one
of them can be omitted.

Step 6b When C is not an IN_NODE, assign (C, @8 ,both, <8) ∈ �0 for all 8. This means that if C
has only a one-way link (either TA or TC), the communication through C uses 0 regardless of
the direction of @8 . If C has links in both directions, we further assign (C, @8 ,both, <8) ∈ �1.
This means that communication through one direction, positive or negative of C, will use 0
regardless of the direction of @8 , and communication through the other direction will use 1
regardless of the direction of @8 . Since we do not need to distinguish between the positive
and negative values of) until the end, we assign the same value. When 0 = 1, in order to
express the existence of both directions, we further use ({C}, @8 ,both, <8) ∈ �0.

Step 7 For the allocations listed in Step 6, calculate the transfer message length of the bot-
tleneck TNI. Calculate the transfer message length of the TNI for the allocation � =

{(C1, @1, 31, <1), . . . , (C=, @=, 3=, <=)} in Step 7.1 and Step 7.2. If the transfer message
length of the bottleneck TNI is smaller than the best value so far, update the best value. After

9

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

completing Step 7, return to Step 4. The calculation of the transfer message length of the
TNI by step 7 can be performed in the allocation by step 6, and if it exceeds the best value,
the steps for the allocation can be terminated at that point.

Step 7.1 For each 8 for which C8 = IN_NODE, add <8 .

Step 7.2 In � ′, excluding those processed in Step 7.1, for each @ ∈ {QX,QY,QZ,QT}, divide it into
� ′ = ∪@ �@, where �@ = {(C@,1, @, 3@,1, <@,1), . . . , (C@,=@ , @, 3@,=@ , <@,=@)}. For each �@, add
the largest<@,8 of 8 that is 3@,8 ∈ {plus, both}. Furthermore, add the largest<@,8 among 8 that
is 3@,8 ∈ {minus, both}. In addition, add the largest <@,8 of 8 that is 3@,8 ∈ {minus, both}.
The reason why only the largest value is added is that only one link is used for communication
in the same direction on the same axis.

5. Benchmark tests

We perform benchmark tests for “the single precision BiCGStab for a Wilson-clover Dirac
matrix with Schwarz Alternating Procedure domain decomposition preconditioning [8] using Jacobi
iteration for the local domain matrix inversion (hereinafter referred to as QCDJDD)” in quark solver.
The lattice size of the target problem is 1924. QCDJDD is divided to several computation and
communication regions as in Table 2.

Table 2: Regions of QCDJDD

Computation regions on K
jinv_ddd_in_s_ static solver in domain
ddd_in_s_ matrix vector multiplication in domain
ddd_out_pre_s_ preprocess for interdomain matrix vector multiplication
ddd_out_pos_s_ postprocess for interdomain matrix vector multiplication
other_calc other calculation in iteration

Computation region on Fugaku
all_calc all calculation
overlapped region overlapped by communication

Communication regions
comlib_irecv_all_c start receiving for neighboring communication
comlib_isend_all_c start sending for neighboring communication
comlib_recv_wait_all_c wait receiving for neighboring communication
comlib_send_wait_all_c wait sending for neighboring communication
s_drbicgstab_dd_hpc_iter_reduc1_ Allreduce for one float
s_drbicgstab_dd_hpc_iter_reduc2_ Allreduce for two floats
s_drbicgstab_dd_hpc_iter_reduc3_ two times of Allreduce for three floats

5.1 Baseline performance measured on K

We run the quark solver on the target problem 1924 using 8 OpenMP threads per node on
82944 nodes of the K computer (hereinafter referred to as K). The measured performance is shown

10

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

in Table 3 for single iteration of QCDJDD on K. The computation efficiency is estimated based
on the peak double precision performance as 1. The performance on the regions ddd_in_s_ and
comlib_recv_wait_all_c are measured with communication-computation overlapping on K.

Table 3: Baseline performace measured on K.

Exec. Time [ms] Comp. Eff. (%)
Total time for computationl regions 27.99 34.8

Region name

jinv_ddd_in_s_ 14.09 41.9
ddd_in_s_ 6.52 44.3
ddd_out_pre_s_ 0.95 12.6
ddd_out_pos_s_ 3.84 16.9
other_calc 2.58 7.1

Total time communication regions 2.66

Region name

comlib_irecv_all_c 0.45
comlib_isend_all_c 0.17
comlib_recv_wait_all_c 0.16
comlib_send_wait_all_c 0.17
s_drbicgstab_dd_hpc_iter_reduc1_ 0.18
s_drbicgstab_dd_hpc_iter_reduc2_ 0.85
s_drbicgstab_dd_hpc_iter_reduc3_ 0.67

Total time 30.65 31.8

5.2 Benchmark tests on Fugaku

Benchmark tests are performed on the boost mode 2.2 GHz without using Eco modes that one
of two floating-point arithmetic pipelines is limited. Elapse time and performance of 500 iterations
of QCDJDD and ddd_in_s_ region measured on two MPI processes using two CMGs for several
problem sizes per MPI process are listed in Table 4 and Table 5. FLOP indicates a floating-point
operation count calculated theoretically. Efficiency indicates floating-point operation efficiency
against single precision floating-point operation peak. We see that performance for 32 × 6 × 4 × 6
is the best in the tests if the communications are not taken into consideration.

Table 4: Elapse time and performance for 500 iterations of QCDJDD measured on two MPI processes using
two CMGs for several problem sizes per MPI process. FLOP indicates a floating-point operation count
calculated theoretically per MPI process. TFLOPS indicates the performance per node. Efficiency indicates
floating-point operation efficiency against the single precision floating-point operation peak.

Size Elapse [s] TFLOPS Efficiency FLOP
32 × 6 × 4 × 3 0.334867 0.8272 12.24% 69254421000
32 × 6 × 4 × 6 0.515010 1.0839 16.04% 139560981000
32 × 6 × 8 × 6 1.145754 0.9786 14.48% 280304661000

32 × 6 × 8 × 12 2.606202 0.8616 12.75% 561369621000
32 × 12 × 8 × 12 5.778703 0.7773 11.50% 1122981141000

11

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

Table 5: Same as Table 4, but for region of ddd_in_s_ during 500 iterations of QCDJDD.

Size Elapse [s] TFLOPS Efficiency FLOP
32 × 6 × 4 × 3 0.068043 1.1208 16.58% 19065600000
32 × 6 × 4 × 6 0.119455 1.3170 19.49% 39329280000
32 × 6 × 8 × 6 0.219403 1.4693 21.74% 80593920000

32 × 6 × 8 × 12 0.559297 1.1699 17.31% 163584000000
32 × 12 × 8 × 12 1.192644 1.1146 16.49% 332328960000

We use a fast Allreduce using the Tofu barrier in quark solver. The Allreduce up to three
elements for MPI_DOUBLE and MPI_FLOAT can be performed on the Tofu barrier. In Table 6,
we show Allreduce benchmark results on 72 racks, 27648 nodes of 48 × 12 × 48 node shape by
using “Intel(R) MPI Benchmarks 2019 Update 6, MPI 1 part (IMB-MPI1)” with and without Tofu
barrier. Minimum (min), maximum (max), and average (avg) time for repetition number, 10000
are shown. The number of bytes (byte) is a message length to be reduced per one MPI_Allreuce
call. And the number of counts (count) is a number of elements. The data type of MPI_FLOAT is
reduced as default of IMB-MPI1. We see that Allreduce up to three elements with the Tofu barrier
is about six times faster than one without the Tofu barrier and it is faster to split MPI_Allreduce for
15 elements into five MPI_Allreduce for three elements.

Table 6: Allreduce benchmark by IMB-MPI1.

with Tofu barrier without Tofu barrier
byte count min [`s] max [`s] avg [`s] min [`s] max [`s] avg [`s]

0 0 0.09 0.14 0.10 0.10 0.16 0.12
4 1 7.60 11.33 9.46 55.69 69.05 62.83
8 2 8.25 10.79 9.50 55.79 68.93 62.91
12 3 8.25 10.93 9.57 55.89 69.02 62.94
16 4 58.99 66.95 62.68 56.42 69.71 63.51
32 8 61.50 72.34 66.32 78.24 97.57 88.14
64 16 61.61 72.38 66.31 78.63 97.84 88.42

128 32 63.70 74.45 68.43 80.46 99.56 90.10

We show a weak scaling plot of the evaluation region in Fig. 5. The vertical line at 147456
nodes denotes the number of nodes used in the benchmark for the target problem size while 158976
nodes is a total nodes of Fugaku. We see a nice weak scaling from 432 nodes to 147456 nodes of
the target nodes with a few exceptions caused by OS jitters. The elapse time increases 0.5 [ms]
(about 7 %) from 432 nodes to 147456 nodes due to the time for Allreduce. The elapse times
of five benchmark tests on 147456 nodes are 0.8000, 0.7998, 0.7982, 0.7989, and 0.7978 [ms],
respectively. These are about 38.3 times faster than the elapse time, 30.65 [ms], for same problem
setup on the full system of K. Performance is 102 PFLOPS, 10% floating-point operation efficiency
against single precision floating-point operation peak. Averaged power is about 20 MW. The power
efficiency is 5 GFLOPS/W.

Table 7 shows a breakdown of the total elapse time for the target problem size on 147456 nodes.

12

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

0.75

0.76

0.77

0.78

0.79

0.8

0.81

100 1000 10000 100000

1152 2304 4608 13824 27648 158976

Ti
m

e
[m

s]
(e

va
lu

at
io

n
re

gi
on

)

Nodes

Figure 5: Weak scaling of the evaluation region.

The total time is divided into calculation time (all_calc) and communication time (all_comm).
all_comm is divided into three parts for neighboring communication and three parts for Allreduce.
Summed total elapse time in the table is slightly longer than 0.8000 [ms] which is measured in
peak performance tests because there is a non-negligible overhead to measure elapse times for each
region. We see half of time is spent for communication. In usual production runs, we may better
use a smaller number of nodes.

Table 7: Elapse time breakdown.

region Elapse time [ms]
all_calc 0.400
all_comm 0.407
comlib_isend_all_c 0.029
comlib_recv_wait_all_c 0.254
comlib_send_wait_all_c 0.062
s_drbicgstab_dd_hpc_iter_reduc1_ 0.015
s_drbicgstab_dd_hpc_iter_reduc1_ 0.016
s_drbicgstab_dd_hpc_iter_reduc1_ 0.031
total 0.807

5.3 Grid benchmark tests on QPACE4

The performance of the Grid c++ QCD library [9] was measured on QPACE4, which is Fujitsu
PRIMEHPC FX700 and deployed at Regensburg University. Meyer et. al., had implemented Grid’s
lower-level functions by using ACLE and ported Grid to A64FX [10]. The results of the benchmark

13

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

tests for the domain wall fermion kernel, Wilson fermion kernel and SU(3) matrix product are
shown in Fig. 6. Both the domain wall fermion kernel and the Wilson fermion kernel do not
scale very well. This is probably mainly due to the fact that communication is not overlapped
by computation. In SU(3) matrix multiplication, a code compiled with GCC can use about 80%
of the theoretical bandwidth and achieve about 300 GFLOPS. Grid on A64FX shows that further
performance improvement can be expected by changing the data layout of the complex numbers to
a QWS-like data layout that separates the real and imaginary parts.

Figure 6: The benchmark tests for the domain wall fermion kernel, Wilson fermion kernel, SU(3) matrix
product, and domain wall kernel with different data layout for complex numbers on QPACE4

5.4 Multigrid solver on Fugaku

Kanamori et al., reported an implementation of a multigrid solver on Fugaku [6]. Their
multigrid solvers are made from several components so that one can use a part of QWS such as
Clover kernel. The code is developed by using Bridge++ code framework [11] and its extension.
They compared the performance with LDDHMC, which is a reimplementation of QWS in Domain
Decomposed HMC (nested BiCGStab with Domain Decomposition + SAP + mixed precision),
using three ensembles (A, B, C), A at<c = 156 MeV on 323×64, B at <c = 512 MeV on 643×96,
C at <c = 145 MeV on 963 × 96. Due to the setup cost of multigrid solver, LDDHMC was faster in

14

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
2
3

Software development and performance of Fugaku and ARM architectures Yoshifumi Nakamura

solving one inversion, but in some cases, multigrid solver was faster in solving 12 inversions. It is
effective for solving the inversematrix-vector product of commonmatrices inmeasurements at small
quark masses. Some optimization seems to be insufficient, and future performance improvement is
expected.

6. Summary

We introduced Fugaku and the current status of LQCD software development on A64FX. As
a milestone, we have achieved 102 PFLOPS, 10% floating-point operation efficiency against single
precision floating-point operation peak, of Clover–Wilson quark solver on 1924 lattice on Fugaku
through the co-design in FS2020 project. It was observed that with proper optimization, execution
efficiency of about 10% can be achieved and found that a little more performance improvement can
be expected by selecting the problem size. From this co-design activity, several fed backs especially
on communication was send to the system implementation. All the benchmark results on Fugaku
have been obtained on the evaluation environment in the trial phase. It does not guarantee the
performance, power and other attributes of Fugaku at the start of its public use operation. Finally,
we would like to thank all the people who were involved in the LQCD working group of the project.

References

[1] K.-I. Ishikawa, I. Kanamori, H. Matsufuru, I. Miyoshi, Y. Mukai, Y. Nakamura, K. Nitadori,
M. Tsuji, [arXiv:2109.10687 [hep-lat]].

[2] TOP500, https://www.top500.org.

[3] A64FX, https://github.com/fujitsu/A64FX.

[4] Y. Ajima et al., IEEE Cluster 2018, 2018.

[5] Y. Nakamura, Y. Mukai, K.-I. Ishikawa, I. Kanamori, (https://github.com/RIKEN-
LQCD/qws).

[6] I. Kanamori et al., PoS LATTICE2021 (2021).

[7] Arm C Language Extensions, https://developer.arm.com/architectures/system-
architectures/software-standards/acle

[8] M. Lüscher, Lattice QCD and the Schwarz alternating procedure, JHEP 0305, 052 (2003);
Comput. Phys. Commun. 165, (2005) 119.

[9] P. Boyle et al., Proceedings of LATTICE 15 (2016) 023 [arxiv:1512.03487 [hep-lat]].

[10] N. Meyer et al., PoS LATTICE2021 (2021).

[11] https://bridge.kek.jp/Lattice-code/.

15

	Introduction
	Fugaku
	QWS
	Tuning quark solver on Fugaku
	Optimization of process mapping and TNI allocation

	Benchmark tests
	Baseline performance measured on K
	Benchmark tests on Fugaku
	Grid benchmark tests on QPACE4
	Multigrid solver on Fugaku

	Summary

