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Theoretical predictions of the proton–neutron mass difference and measurements of the proton’s
charge radius require inputs from the Compton amplitude subtraction function. Model-dependent
and non-relativistic calculations of this subtraction function vary significantly, and hence it con-
tributes significant uncertainties to the aforementioned physical quantities. We report on the use
of Feynman-Hellmann methods in lattice QCD to calculate the subtraction function from first
principles. In particular, our initial results show anomalous high-energy behaviour that is at odds
with the prediction from the operator product expansion (OPE). Therefore, we investigate the
possibility that this unexpected behaviour is due to lattice artifacts, by varying the lattice spacing
and volume, and comparing different discretisations of the vector current. Finally, we explore
a Feynman-Hellmann implementation that is less sensitive to short-distance contributions and
show that the subtraction function’s anomalous behaviour can be attributed to these short-distance
contributions. As such, this work represents the first steps in achieving a complete understanding
of the Compton amplitude subtraction function.
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Figure 1: Forward Compton scattering for a proton with momentum p and virtual photon with momentum
q.

1. Introduction

The forward Compton amplitude is a necessary input into two important physical quantities:
predictions for the proton–neutron mass difference, and the hadronic background for measurements
of the proton charge radius. All the components of this Compton amplitude can be determined
experimentally, except for its subtraction function, S1(Q2). Therefore, a first-principles lattice QCD
calculation of this subtraction function is of great interest.

The mass difference of the proton and neutron has two sources: the different masses of the
up and down quarks, and the different charges of these quarks—see Refs. [1, 2] for reviews. The
leading electromagnetic contribution to the mass difference (Fig. 2a) can be evaluated from the
Cottingham sum rule [3],

δmEM = −
i

2mp

α

(2π)3

∫
d4q

Tµµ (p,q)

Q2 − iε
, (1.1)

where Tµν is the forward, spin-averaged Compton amplitude for a proton:

Tµν(p,q) ≡
i
2

∑
s

∫
d4z eiq ·z 〈p, s |T{ jµ(z) jν(0)}|p, s〉. (1.2)

This amplitude describes the process of photon-proton scattering, γ(∗)(q)P(p) → γ(∗)(q)P(p), with
no momentum transfer between initial and final states (Fig. 1).

Similarly, the Compton amplitude is required to constrain measurements of the proton charge
radius from the muonic-hydrogen Lamb shift. Crucially, recent determinations of the charge radius
from this Lamb shift conflict with previous results obtained via electron–proton scattering [4] by
seven standard deviations [5]—the so-called ‘proton radius puzzle’ [6]. The hadronic corrections
to the Lamb shift are dependent on the two-photon-exchange diagram (Fig. 2b) [7, 8]:

MTPE = −ie4
∫

d4q
(2π)4

TµνLµν

Q4 − iε
, (1.3)

where Lµν is the leptonic contribution, which can be calculated from QED, and Tµν is the proton
Compton amplitude. Since the Compton subtraction function is poorly constrained, it contributes
the dominant uncertainty to the hadronic background [9–11]. Hence more precise determinations
of the subtraction function could help clarify the proton radius puzzle.

It has been conjectured that the subtraction function receives contributions from a J = 0
fixed pole, which is independent of Q2 [12]. Such a singularity may arise from the exchange of
a particle of spin-zero or from a contact interaction term. If correct, this would have far-reaching
phenomenological consequences [13], and potentially thwart the Cottingham sum rule. However,
this conjecture has remained rather controversial [14].
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p p

(a) Electromagnetic self-energy

k k

p p

q −q

(b) Two-photon exchange
Figure 2: Two processes which have dependence on hadronic structure given by the Compton amplitude.

The starting point for our study is the spin-averaged Compton amplitude, Eq. (1.2), which can
be decomposed into two structures:

Tµν(p,q) =
(
−gµν +

qµqν
q2

)
F1(ω,Q2) +

(
pµ −

p · q
q2 qµ

) (
pν −

p · q
q2 qν

)
F2(ω,Q2)

p · q
, (1.4)

where F1,2 are theCompton structure functions, defined in terms of the photon virtuality, Q2 = −q2,
and the inverse Bjorken scaling variable, ω = 2(p · q)/Q2. These structure functions satisfy the
following fixed-Q2 dispersion integrals [15]:

F 1(ω,Q2) = F1(ω,Q2) − F1(0,Q2) = 2ω2
∫ 1

0
dx

2xF1(x,Q2)

1 − x2ω2 − iε
, (1.5)

F2(ω,Q2) = 4ω
∫ 1

0
dx

F2(x,Q2)

1 − x2ω2 − iε
, (1.6)

where F1,2(x = ω−1,Q2) are measurable from deep inelastic scattering (DIS) cross sections.
However, equation (1.5) features a contribution from the Compton amplitude subtraction

function,
S1(Q2) ≡ F1(ω = 0,Q2), (1.7)

which is not experimentally accessible. Instead, this subtraction function has been determined
from model-dependent schemes [9, 11, 16–21], and a non-relativistic calculation [10]. These
calculations have sizeable errors and are not always consistent with one another [22]. At large Q2,
the subtraction function can be evaluatedmodel-independently using the operator product expansion
(OPE) [23, 24], and the following asymptotic behaviour is predicted:

S1(Q2) ∼
m2

N

Q2 , for Q2 � m2
N . (1.8)

However, as can be seen in Eqs. (1.1) and (1.3), a determination for the whole domain of S1(Q2) is
necessary for inputs into the aforementioned physical quantities. Therefore, a determination of this
subtraction function, particularly for low and intermediate Q2, is of great interest.

Recently, the Feynman-Hellmann method has been used to calculate the forward Compton
amplitude in lattice QCD [25, 26], and has been extended to off-forward kinematics [27]. In this
report, we apply this technique to calculate the Compton subtraction function. In particular, our
initial results display large deviations from the asymptotic behaviour predicted by theOPE, Eq. (1.8).
Therefore, we conduct an investigation of lattice artifacts of the subtraction function. We vary the
lattice volume and spacing, and compare different discretisations of the vector current. Finally, we
present a novel method to explore the effects of current-current contact terms in Feynman-Hellmann
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methods. Hence this work lays the foundation for future lattice QCD calculations of the Compton
subtraction function, which would allow for better theoretical predictions of the proton–neutron
mass difference, and more precise experimental determinations of the proton charge radius.

2. Feynman-Hellmann: Local vector current implementation

Feynman-Hellmann methods provide a feasible alternative to the direct calculation of four-
point functions. A background field is introduced to the quark propagator, with a small unphysical
coupling, λ. At order λ2, the perturbation to the propagator is a four-point function with a sum
over time-slices on which the background field is inserted. As such, one set of Feynman-Hellmann
inversions yields the sum over time-slices necessary to calculate a discretisation of the Compton
amplitude, Eq. (1.2). By contrast, a direct four-point function evaluation of this amplitude would
require O(T2) inversions to get all possible insertion times for a lattice of temporal extent T .

It was shown in Ref. [26] that for a perturbed nucleon propagator, Gλ(t) ' Aλe−Eλt , the
perturbed energy, Eλ, can be related to the Compton amplitude subtraction function:

− mN
∂2Eλ
∂λ2

����
λ=0
= S1(Q2), (2.1)

in the nucleon’s rest frame: ®p = 0. The derivation of this Feynman-Hellmann relation, Eq. (2.1),
was carried out in terms of hadronic states with continuous spacetime coordinates [26]. Since our
aim here will be on understanding and controlling several lattice artifacts, we instead focus on the
Feynman-Hellmann implementation at the level of lattice quark propagators.

A common discretisation of the electromagnetic current is the local current:

j locµ (n) = ψ̄(n)γµψ(n). (2.2)

To calculate the Compton amplitude, Eq. (1.2), with this discretisation, we compute the following
perturbed propagator:

Sλ =
[
M − λO ®q

]−1
, (2.3)

where the perturbing matrix is[
O ®q

]
n,m
= δn,mφ ®q(®n)iγ3, with φ ®q(®n) = ei ®q · ®n + e−i ®q · ®n, (2.4)

for λ a small coupling. M is the fermion matrix, which can be written, up to the clover term [28], as

M(n,m) ≡ (m0 + 4) δn,m −
1

2a

∑
µ

[
®Dµ(n,m) + ®Dµ(n,m)

]
, (2.5)

with
®Dµ(n,m) ≡ (1 − γµ)Uµ(n)δn+µ̂,m, ®Dµ(n,m) ≡ (1 + γµ)Uµ(n − µ̂)†δn−µ̂,m.

Therefore, the second derivative of the perturbed propagator is

∂2

∂λ2 Sλ

����
λ=0
= 2M−1O ®qM−1O ®qM−1, (2.6)
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Table 1: Gauge ensemble details

Nf L3 × T L[fm] a[fm] β κ mπ[GeV] ZV

2 + 1 323 × 64 2.4 0.074 5.50 0.120900 0.47 0.86
2 + 1 483 × 96 3.3 0.068 5.65 0.122005 0.41 0.87

483 × 96 2.8 0.058 5.80 0.122810 0.43 0.88

which is a four-point function with the local current, Eq. (2.2).
In terms of the quark propagators, the nucleon propagators with the perturbation to the u or d

quark1 are written, up to spin/colour structure, as

Guu
λ ∼

〈
Su
λSu

λSd
〉
, Gdd

λ ∼
〈
SuSuSd

λ

〉
, Gud

λ1,λ2
∼

〈
Su
λ1

Su
λ1

Sd
λ2

〉
. (2.7)

Recalling the spectral representation of the nucleon perturbed propagator, Gqq′

λ (t) ' Aqq′

λ e−E
qq′

λ t ,
we have the following flavour-dependent Feynman-Hellmann relations:

− mN

∂2Eqq
λ

∂λ2

����
λ=0
= Sqq

1 (Q
2), −2mN

∂2Eud
λ

∂λ1∂λ2

����
λ1=λ2=0

= Sud
1 (Q

2) + Sdu
1 (Q

2). (2.8)

Therefore, to calculate the proton contribution to the subtraction function, we take

Sp
1 (Q

2) =
∑

q,q′=u,d

eqeq′S
qq′

1 (Q
2) =

4
9

Suu
1 (Q

2) +
1
9

Sdd
1 (Q

2) −
2
9
(
Sud

1 (Q
2) + Sdu

1 (Q
2)
)
. (2.9)

Results: Local Current Implementation

The simulations with the local current implementation were carried out on three different gauge
ensembles generated by the QCDSF/UKQCD Collaborations [29] (Tab. 1), with varying volume,
lattice spacing and quark masses. All three ensembles are at the SU(3) flavour symmetric point:
κl = κs = κ. The inserted momentum is always chosen to be of the form qµ = (0, ®q). Therefore, to
calculate the subtraction function, for which p·q = 0, we simply choose our nucleon sinkmomentum
®p = 0. For the 323 × 64 lattice, we calculate a large range of Q2 values, while for the two larger
volumes, there are fewer. For the majority of points, the statistics are Nmeas ∼ O(100) − O(1000),
with some higher statistics points, Nmeas ∼ O(10000), for the smallest volume.

The results are presented in Fig. 3, and show an asymptotic behaviour that clearly deviates from
the OPE prediction of S1(Q2) ∼ Q−2, given in Eq. (1.8). Instead of trending to zero for Q2 � m2

N ,
the subtraction function approaches a non-zero value.

In Regge analysis, it has been pointed out that the Compton amplitude may contain an OPE-
breaking ‘fixed pole’ [13, 30], which could possibly account for the results in Fig. 3.

However, since the OPE is such a successful tool, we must investigate whether or not this
anomalous asymptotic behaviour is due to a lattice artifact. As such artifacts will vanish in the

1Since the perturbation is only applied to the fermion propagators and not to the sea quarks, these and all other results
in this report are connected only.
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Figure 3: Local current proton subtraction function results for a range of lattices.

continuum limit, wemight expect them to be sensitive to variations in the lattice volume and spacing.
However, the results in Fig. 3 indicate only very minimal volume and spacing dependence in the
subtraction function. This is in agreement with recent calculations using baryon chiral perturbation
theory, where it was found that finite volume corrections to the Compton amplitude subtraction
function would indeed be small [31].

Since the anomalous asymptotic behaviour of the subtraction function does not vary greatly
with changes in volume and spacing, we next investigate how it depends on the discretisation of the
vector current.

3. Feynman-Hellmann: Conserved vector current implementation

The results shown in the previous section were based on the local discretisation of the vector
current, Eq. (2.2). In this section, we will repeat the same calculation with the conserved vector
current,

jconµ (n) =
1
2
ψ̄(n)

(
®Dµ(n,m) − ®Dµ(n,m)

)
ψ(m). (3.1)

For the Wilson fermion action, this operator is a Noether current, with a renormalisation factor of
ZV = 1, in contrast to the local operator. However, our implementation of this current followed here
introduces an unphysical contamination to the energy shift, which we refer to as the seagull term.

We implement the conserved current by introducing a perturbation on the gauge links:

Uµ(n) → [1 + δµ3(eiλφ(n) − 1)]Uµ(n). (3.2)

Note that different implementations are possible; however, by modifying the gauge links, we can
use existing optimised algorithms to more efficiently invert the fermion matrix.

6
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Figure 4: Plot of the ratio R(Υu, t) = G3(Υu, t)/G2(t) where the baryon three-point function was calculated
with fixed insertion at t = 10. The purple shaded horizontal region is the fitting window (t ∈ [16,20]).

Therefore, the perturbed fermion matrix is

Mλ(n,m) = (m0 + 4) δn,m −
1

2a

∑
µ

[
®Dµ(n,m, λ) + ®Dµ(n,m, λ)

]
, (3.3)

with

®Dµ(n,m, λ) → ®Dµ(n,m)
[
1 + δµ3

(
eiλφ(n) − 1

)]
,

®Dµ(n,m, λ) → ®Dµ(n,m)
[
1 + δµ3

(
e−iλφ(n+µ̂) − 1

)]
.

The perturbed propagator is then Sλ = [Mλ]
−1, which has the second derivative

∂2

∂λ2 Sλ

����
λ=0
= M−1 (φ ®q ®D3 + ®D3φ ®q

)
M−1︸                            ︷︷                            ︸

seagull contribution

+ 2M−1 (φ ®q ®D3 − ®D3φ ®q
)
M−1 (φ ®q ®D3 − ®D3φ ®q

)
M−1︸                                                           ︷︷                                                           ︸

four-point function

.

(3.4)
Therefore, the Feynman-Hellmann relation, Eq. (2.1), has an additional seagull term for this con-
served current implementation:

− mN
∂2Eλ
∂λ2

����
λ=0
= S1(Q2) − Υ, (3.5)

where the seagull term is given by

Υq = 2〈N |ψ̄q(n)
(
®D3 + ®D3

)
ψq(n)|N〉. (3.6)

Note that (φ ®q)2 = 2 + e2i ®q · ®n + e−2i ®q · ®n, and the e±2i ®q · ®n terms do not produce a contribution to the
energy shift. Hence Υ is independent of the transferred momentum Q2.

7
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Sp1(Q2)−Υ

Sp1(Q2)

Figure 5: Proton subtraction function results using the conserved current implementation, before (green)
and after (yellow) removal of seagull term, Υ. The results in blue are from the local implementation seen in
Fig. 3.

3.1 Seagull results

As discussed in the preceding section, the seagull term arises from the fact that the perturbation
to the fermionmatrix is not a simple linear shift, but was instead applied to the gauge links, Eq. (3.2).
Since this seagull term is purely an artifact of the implementation process, we must remove it from
our calculation of the energy shift to isolate the subtraction function.

The three-point function corresponding to the seagull term is computed using a conventional
sequential source through the operator. The required matrix element is then extracted from the ratio
of the three-point and two-point functions:

R(Υq, t) =
G3(Υq, t)
G2(t)

t�a
' Υq, (3.7)

for Υq as defined in Eq. (3.6). The results for the up-quark are presented in Fig. 4. Once this
matrix element is calculated we remove it from the conserved current calculation, as per Eq. (3.5),
to isolate the subtraction function.

3.2 Results: Conserved current implementation

The proton subtraction function is calculated for the conserved current using the same gauge
ensemble as the 323 × 64 volume local current seen in Tab. 1 with Nmeas = 1000.

In comparison to the local current, we can see in Fig. 5 that the conserved current subtraction
function exhibits different behaviour in its intermediateQ2 values. Once we remove the seagull term
to isolate the subtraction function, the large Q2 behaviour closely matches OPE-breaking behaviour

8
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of the local current. Therefore, the anomalous asymptotic behaviour of the subtraction function can
not be attributed directly to the discretisation of the current.

4. Temporal Interlacing

As outlined in the previous sections, the observed anomalous asymptotic behaviour of S1(Q2)

changes very little with different discretisations of the current or with the variations in lattice
spacing and volume. Here, we explore a Feynman-Hellmann implementation that allows us to
sample the integration region of the Compton amplitude, Eq. (1.2), more coarsely. The motivation
for considering such an implementation is that we will remove any contamination from a potential
contact term, however it comes with the caveat that this method will also remove any essential short-
distance contributions, such as the Z-graph which is proposed to be responsible for the elusive fixed
pole [12]. Keeping this in mind, however, by exploring such an implementation we hope to gain
insights into whether or not the observed anomalous behaviour is due to a short-distance effect.

As previously discussed, our calculation has a sum over all time slices on which the currents
are inserted, including contributions for which the Euclidean separation of currents is |z | ∼ a, with
zµ as in Eq. (1.2). As a first step for investigating the effects of these contributions, we implement
a coarser sampling of the temporal integration region by inserting two currents on different sets of
time slices thereby introducing a minimum temporal separation, τmin. For instance, in the simplest
case where τmin = 1, we insert one current on the even time slices and the other on the odd:

[O1]n,m = δ
even
tn ,tm

δ®n, ®mφ ®q(®n)iγ3, [O2]n,m = δ
odd
tn ,tm

δ®n, ®mφ ®q(®n)iγ3, (4.1)

where we have defined δeven(odd) to be non-vanishing only on even (odd) timeslices. The perturbed
propagator is now

S®λ(zn; zm) =
[ [

M − λ1O1 − λ2O2
]−1

]
n,m

. (4.2)

Therefore, the Feynman-Hellmann relation for τmin = 1 interlacing is

−EN

∂2E ®λ
∂λ1λ2

����
®λ=0
=

∑
t1=0,2,4,6...

∑
t2=1,3,5,...

∑
®z

e−i ®q ·®z 〈N( ®p)|T{ j3(®z, t1) j3(0, t2)}|N( ®p)〉. (4.3)

With a judicious choice of kinematics, the RHS of Eq. (4.3) is proportional to a discretisation of
S1(Q2). The interlacing in Eq. (4.3) changes the measure of the two sums over time-slices from
a → 2a, which must be accounted for by a factor of four. However, once this normalisation
is accounted for, in the continuum limit Eq. (4.3) approaches the same object as our previous
discretisations of the Compton amplitude. Similar results can be derived for τmin = 2.

4.1 Interlacing results

Our preliminary results for S1(Q2) with the interlacing method are calculated on the 323 × 64
gauge configurations (see Tab. 1), using the local current, Eq. (2.2). We implement interlacings
for two different values of minimum time separation: τmin = 0, which are simply the results from

9
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Figure 6: Results for multiple interlacings with the local current. Interlacing results have low statistics,
Nmeas ≈ 200, while the uninterlaced (τmin = 0) use the implementation from section 2, and have Nmeas ≈ 1000.
Left: The proton subtraction function, with OPE prediction from Ref. [24]. Right: The up quark contribution
to the subtracted Compton structure function, F 1, for Q2 ≈ 4.7 GeV2.

section 2, and τmin = 1, for which the new method has been applied. Since our interlaced results
are exploratory, they have relatively low statistics: Nmeas ≈ 200.

In left plot of Fig. 6, we show the subtraction function with and without interlacing. We observe
that the anomalous asymptotic behaviour of the subtraction function is reduced in the interlaced
results. We also observe that the Q2 dependence of the two results are remarkably similar. Hence it
would appear that by removing the t = 0 contribution to the integral, we have essentially removed a
contribution that is constant in Q2. Whether this is due to an unphysical contact term or a fixed pole
remains a question to be addressed in future work. By contrast, in the right plot of Fig. 6, we observe
that the subtracted Compton structure function, F 1 defined in Eq. (1.5), which is independent of
S1(Q2), is largely unaffected by the interlacing.

This demonstrates that the anomalous asymptotic behaviour of the subtraction function can be
attributed to very short-distance contributions (i.e. |z | ∼ a), which are removed by the interlacing
procedure. However, the |z | ∼ a contributions apparently do not affect the Compton structure
function F 1 significantly. These very short-distance contributions could be lattice artifacts as
suggested by Martinelli et al. [32, 33], or they could be of a physical origin, such as the proposed
interactions giving rise to an OPE-breaking ‘fixed pole’. However, further investigation, numerical
and analytic, is needed before we draw any strong conclusions.

5. Conclusion

In this report, we present several calculations of the Compton amplitude subtraction function,
S1(Q2), in lattice QCD. In contrast to the OPE prediction of S1(Q2) ∼ Q−2, our initial results trend
to a large non-zero value at high-energies. This anomalous behaviour was found to persist even
after varying the lattice spacing and changing the current discretisation.

In the final section, we present a novel method, temporal interlacing, that allows us to more
coarsely sample the integration region of the Compton amplitude. Using this method, we demon-
strate that the anomalous behaviour of the subtraction function can be attributed to very short-
distance contributions, which may be lattice artifacts or physical contributions—future work will

10
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aim to clarify this. We are currently performing an investigation of the Compton amplitude and its
subtraction function on configurations with gradient flow as an extension of [34]. This investigation
is ongoing and results will be reported elsewhere.

This work provides a foundation for future lattice QCD calculations of the Compton amplitude
subtraction function. This will allow us to reduce the theoretical uncertainties in predictions for the
proton–neutron mass difference and improve determinations of the proton charge radius.
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