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loops. To better expose fluctuations, a standardized version of Polyakov loops is also considered.
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1. Introduction

A physical system exhibits different macroscopical behaviors depending on the thermodynamic
parameters describing its equilibrium. Such behaviors distinguish the phases of matter, which may
change undergoing a phase transition. Usually, the phases of a system can be classified by some
order parameter, the value of which indicates the phase of the system. Typical examples of order
parameters are the magnetization in the Ising model or the Polyakov loop in the SU(3) gauge theory.
On the other hand, the definition of an order parameter is not always possible or straightforward:
a typical example is confinement in QCD. The standard lore associates confinement with chiral
symmetry breaking, or, more generically, assumes that confinement would imply chiral breaking;
however, it has also been hypothesized that confinement persists up to temperature)3 of about twice
the chiral transition temperature )j. If this is the case, a new phase would appear between )j and
)3 . Machine learning techniques may succeed in identifying such a phase in a model independent
way.

Nowadays, machine learning is applied successfully in many areas of physics. A common
problem where neural networks are employed is classification, where the network is trained to
distinguish different input data according to some features of the input itself. Since the distinction
of phases of matter can be regarded as a classification problem, machine-learning algorithms might
help in classifying phases of matter even when a properly-said order parameter is lacking.

There have been several other attempts to use neural networks or AI methods to classify
phases and identify phase transitions [1]. So far, these studies have been mostly restricted to spin
models, see e.g. Ref.[2, 3] for a small subset of available studies, which contains a more complete
set of references. Analysis of the thermal transition in Yang-Mills have appeared [4, 5], but the
investigations of gauge models, and of the even more complex fermion-gauge models such as QCD
are scarce.

In this study, we probe the capabilities of a neural network to distinguish among different phases
of quantum field theories in an unsupervised scheme, that is without using predefined labels for
different configurations during the training of the network. We consider pure gauge as well as full
QCD. SU(3) and QCD configurations are obtained from lattice simulations in a 3+1 dimensional
lattice. We deal with the complications of the four dimensional gauge dynamics by defining the
three dimensional Polyakov loop configurations: at each space point and on each configuration we
compute the Polyakov loop, which is then used as input for the unsupervised classification problem.

2. Phase transitions as unsupervised learning problems

To classify configurations of Polyakov loops at different temperatures, we build 3D-convolutional
autoencoders [6] using TensorFlow and Keras [7–9]. An autoencoder is a compound of two neural
networks: an encoder that condenses the input information, for example to a single number, and a
decoder, which reconstructs the input data from the compressed ones. Here, the encoder processes
the information contained in the Polyakov loops configuration to a single number, named encoded
classifier (see figure 1).

The autoencoder is trained, as a whole, to reproduce as output its own input. When this is
achieved, the encoded classifier effectively encodes the most important feature(s) describing the
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Figure 1: Scheme of the autoencoder used in this study. In the encoder, the Polyakov loop configuration
is fed into 3D convolutional and then to dense layers; thereby the encoded classifier is obtained. A sim-
ilar architecture is used for the decoder, which starting from the encoded classifier reconstructs the input
configuration.

variety of the input. The mapping of the input to the encoded classifier, however, can be quite
complicated. To simplify matters, one can perform a semi-supervised training by pinning some
of the input configurations at extreme temperatures to predefined values of the encoded classifier.
In such a scheme, unlabelled configurations similar to those pinned somewhere in the latent space
are clustered together, and the interpretation of the encoded classifier is easier. Assuming lattice
configurations simulated at different temperatures are mainly distinguished by their degree of
disorder, the encoded classifier may provide an effective order parameter for an arbitrary lattice
configuration, independently of the underlying theory.

3. Data-set

For this study, we have used configurations from different lattices depending on the theory.
For the pure (* (3) gauge theory we used 83 × 4 lattice configurations generated using the MILC
public code [10]. For this geometry and action, the pseudocritical coupling is V2 = 5.69(2), giving
a the critical temperature )2 ∼ 260 MeV [11]. We analysed 30 configurations of Polyakov loops
for each temperature. The configurations span a wide range of the coupling parameter, from strong
to very weak coupling; we formally express the results as a function of )/)2 for convenience of
comparison with dynamical studies, and of course the largest values have a limited meaning - they
were just meant to probe the system as close as possible to the free regime.

The full QCD configurations are obtained from simulations of # 5 = 2+ 1+ 1 Wilson fermions
at maximal twist on a lattice of 323 space dimension [12]. The strange and charm masses have their
physical values, while the pion mass is 370 MeV. This relatively large value helps the analysis with
the Polyakov loops, and among the various future step of interest there is of course the study of the
behaviour closer to the chiral limit. The pseudocritical temperature is )2 ∼ 200 MeV. For each
temperature studied, 200 Polyakov loops configurations have been used.

In both cases, for the training set a fraction 60% of the configurations is randomly selected, and
the remaining configurations define the validation set. Only the training set is used by the neural
network in the training process. In this paper, we use the known value of the critical temperatures
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Figure 2: The encoded classifier for the training and validation sets of Polyakov loop configurations in the
unsupervised scheme. A change in the behavior of the encoded classifier is visible at ) = )2 . Three values
of the encoded classifier are equally possible for temperature higher than )2 , which can be interpreted as the
spontaneous symmetry breaking of the centre symmetry Z3.

only to highlight visually in the figures where we expect the transition to happen. Such information
is not available to the neural network.

4. Results

In the case of pure (* (3) gauge theory, the mean Polyakov loop is an exact order parameter
for confinement in an infinite volume. A machine learning approach to finite size scaling in a spin
model may be found in Ref.[13]. Training the autoencoder as an unsupervised and semi-supervised
classification problemwe obtain an encoded classifier clearly related to the order parameter. Indeed,
two classes are identified by the encoded classifier below and above )2 . The unsupervised scheme
highlights the Z3 symmetry breaking: three different values of the encoded classifier are equally
possible for the gauge theory at temperature higher than )2 , whereas for ) < )2 there is only one
possibility (figure 2).

For the semi-supervised learning problem, we pin a fraction of ∼ 20% of the training config-
urations at the lowest and highest values of )/)2 to predefined values of the encoder classifier, in
this case 0 and 1 respectively1. This procedure strengthens the correlation of the encoded classifier
with the true order parameter (fig. 3).

In order to ensure that the network is learning from the texture on the lattice rather than simply
averaging the Polyakov loops on each simulation, we define a standardized Polyakov loop. Let % (8)

be the 8-th 3d Polyakov loop configuration and `8 the mean value of % (8) . Denoting with the indices
G, H, I the spatial coordinates on the lattice, running from 1 to the lattice dimension !, we define a
standard deviation:

f8 =

√√√
1

2 × !3

!∑
G,H,I=1

|% (8) GHI − `8 |2.

The components of the 8-th standardized configuration are:

%̃
(8)
GHI = (% (8)GHI − `8)/f8 .

1Neither the latent space nor the encoded classifier have a physical meaning, so that we can use arbitrary numbers for
this pinning.
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Figure 3: The encoded classifier for the training and validation sets of Polyakov loop configurations in
the semi-supervised scheme. The algorithm recognises configurations below )2 as similar to those whose
encoded classifier has been set to 0, and for very high temperature they are clustered around 1. The change
in behavior around )2 is clearly visible.
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Figure 4: The encoded classifier for the training and validation sets of the standardized Polyakov loop in
the semi-supervised scheme. Configurations at ) ∼ )2 are more difficult to discern, but the change in the
encoded classifier is still visible.

Despite a slight loss in precision, the network is still perfectly able to identify the presence of a
phase transition at ) ∼ )2 even when using the standardised Polyakov loop as input for the network
(fig 4).

In the case of QCD, the Polyakov loop is no longer an order parameter and the identification of
a phase transition based on the Polyakov loop is not theoretically justified. On top of that, the phase
transition for the configurations studied is known to be a crossover, so that the change in behavior
of the encoded classifier is expected to be milder compared with the (* (3) case. Identifying the
pseudocritical temperature is then a significantly different challenge with respect to the pure gauge
study.

We study the semi-supervised problem with the Polyakov loop and its standardized version.
This time, we pin the configurations at low temperatures to an encoded classifier equal to 1, and
higher temperatures are pinned to 0. In this case, the encoded classifier turns out to be a much
smoother function compared to the pure gauge theory, in agreement with our anticipations. From
the encoded classifier, one could identify two classes, separated at temperature ) ∼ 1.5)2 , as shown
in figure 5. This is a good achievement considering the simple architecture of the neural network
used compared to the complexity of the problem.

For the standardized configuration, a discussion similar to the previous one can be repeated.
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Figure 5: The encoded classifier for QCD configurations in the semi-supervised scheme. The encoded
classifier changes smoothly as a function of temperature. Two classes may be identified separated by the
temperature ) ∼ 1.5)2 .
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Figure 6: Same as figure 5, but the standardized Polyakov loop is used as input. The distinction of two
classes is still possible at temperature ) ∼ 1.5)2 .

Surprisingly, in this case, the loss in precision with respect to the pure Polyakov loop configurations
is much lower compared to the (* (3) case, and one could still identify two classes for a critical
temperature ) ∼ 1.5)2 (figure 6). A finer temperature scan could further probe the difference
between the two preprocessing.

5. Conclusions

We probed the capability of Convolutional Neural Networks trained as either unsupervised or
semi-supervised classifiers to identify different phases of gauge theories. We observe a crossover
between the two phases at the expected temperature in a pure gauge theory and a qualitatively similar
behavior in full QCD. A finer temperature scan, finite-size scaling and continuum limit will improve
the performance of the autoencoder, hopefully providing further insight into ML approaches to the
study of phase transitions.
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