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In this work we study the renormalization of the SUSY Noether current in Supersymmetric N = 1
Yang-Mills (SYM) theory on the lattice. In particular, we study the mixing of the current with all
other compatible operators of dimension 7/2 and 5/2, leading from the lattice-regularized to the
MS-renormalized operator basis. We perform our task in two ways:
(a) We compute, in dimensional regularization, the conversion factors relating the MS scheme to
an intermediate gauge-invariant coordinate-space scheme. In this second scheme, renormalization
can be performed via lattice simulations. This could help to investigate the breaking of SUSY
on the lattice and strategies towards simulations of supersymmetric QCD. Here we present some
preliminary numerical results.
(b) We use lattice perturbation theory and compute, to one loop, various two- and three-point
functions. We consider mixing with all relevant gauge-noninvariant operators, which contain also
ghost fields.
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1. Introduction

The study of Supersymmetry on the Lattice is becoming more viable in recent years. One of
the simplest models involving gauge fields, and an important forerunner for beyond-the-Standard-
Model studies, is the Supersymmetric Yang-Mills (SYM) theory. A fundamental question to be
addressed is the breaking and restoration of SUSY on the lattice; to this effect, studies of the
Noether supercurrent and its Green’s functions are essential. Such studies necessitate a careful
renormalization of the supercurrent and its complex pattern of mixing with other operators.

In this work we perform one-loop calculations of Green’s functions (GF) containing the super-
current, 𝑆𝜇, as well as other operators, which have the same or lower dimensionality with 𝑆𝜇 but
they have the same quantum numbers. We employ dimensional regularization, in order to obtain
the MS-renormalized Green’s functions, and lattice regularization for the extraction of the lattice
renormalization functions in the MS scheme. We use a standard discretization where gluinos live
on the lattice sites and the gluons live on the link variables of the lattice. We obtain analytic expres-
sions for the renormalization function of the supercurrent. The number of colors, 𝑁𝑐 , and the gauge
parameter, 𝛼, are left unspecified. Finally, we address the mixing which occurs among the operators
and the supercurrent beyond tree level. In the same context, a gauge invariant renormalization
scheme (GIRS) [5] is used to extract the renormalization of 𝑆𝜇; the renormalization factors and the
mixing coefficients in GIRS scheme can be obtained also in a fully non-perturbative manner and
the GIRS non-perturbative results can be connected with MS via conversion factors.

Our studies have been done in the Wess-Zumino (WZ) gauge. In this gauge, the SYM
Lagrangian contains the gluon together with the gluino fields; the auxiliary fields are eliminated.
The Lagrangian of SYM, in Euclidean space, is:

LSYM =
1
4
𝑢𝛼
𝜇𝜈𝑢

𝛼
𝜇𝜈 +

1
2
𝜆̄𝛼𝛾𝜇D𝜇𝜆

𝛼, (1)

In order to perform our calculations, we fix the gauge by including a gauge-fixing term, together
with the compensating ghost field 𝑐𝛼 term; these terms are the same as in the non-supersymmetric
case. The total action is no longer gauge invariant but it is Becchi-Rouet-Stora-Tyutin (BRST)
invariant. The supercurrent is a spinor of dimension-7/2, which is gauge-invariant and carries one
external Lorentz index, 𝜇:

𝑆𝜇 = −1
2

tr𝑐 (𝑢𝜌 𝜎 [𝛾𝜌, 𝛾𝜎]𝛾𝜇𝜆) (2)

𝑆𝜇 mixes with another dimension-7/2 gauge invariant operator 𝑇𝜇 [1]:

𝑇𝜇 = 2tr𝑐 (𝑢𝜇 𝜈𝛾𝜈𝜆) (3)

A consequence of gauge fixing is that 𝑆𝜇 can mix with three more classes of gauge-noninvariant
operators which have the same transformation properties under global symmetries (e.g. Lorentz,
or hypercubic on the lattice, global 𝑆𝑈 (𝑁𝑐) transformations, etc.) and whose dimension is lower
or equal to that of 𝑆𝜇.

Class A: BRST variations of some operator.

Class B: Operators which vanish by the equations of motion.
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Supercurrent renormalization A. Skouroupathis and I. Soler

Class C: Any other operators which share the same global symmetries, but do not belong to the
above classes; these can at most have finite mixing with 𝑆𝜇.

We present all candidate gauge-noninvariant operators which can mix with 𝑆𝜇 and belong to the
classes A, B, C:

O𝐴1 =
1
𝛼

tr𝑐 (𝜕𝜈𝑢𝜈𝛾𝜇𝜆) − 𝑖𝑔 tr𝑐 ( [𝑐, 𝑐]𝛾𝜇𝜆)

O𝐵1 = tr𝑐 (𝑢𝜇 6𝐷𝜆)
O𝐵2 = tr𝑐 (/𝑢𝛾𝜇 6𝐷𝜆)
O𝐶1 = tr𝑐 (𝑢𝜇𝜆)
O𝐶2 = tr𝑐 (/𝑢𝛾𝜇𝜆)
O𝐶3 = tr𝑐 (/𝑢𝜕𝜇𝜆)

O𝐶4 = tr𝑐 ((𝜕𝜇/𝑢) 𝜆)
O𝐶5 = tr𝑐 ((𝜕𝜈𝑢𝜈)𝛾𝜇𝜆)
O𝐶6 = tr𝑐 (𝑢𝜈𝛾𝜇𝜕𝜈𝜆)
O𝐶7 = 𝑖 𝑔 tr𝑐 ( [𝑢𝜌 , 𝑢𝜎] [𝛾𝜌, 𝛾𝜎]𝛾𝜇𝜆)
O𝐶8 = 𝑖 𝑔 tr𝑐 ( [𝑢𝜇, 𝑢𝜈]𝛾𝜈𝜆)
O𝐶9 = 𝑖 𝑔 tr𝑐 ( [𝑐, 𝑐]𝛾𝜇𝜆) (4)

2. Feynman diagrams

The extraction of all mixing coefficients entering the renormalization of 𝑆𝜇 entails evaluation of
the two- and three-point GFs: 〈𝑢𝜈𝑆𝜇𝜆̄〉, 〈𝑐 𝑆𝜇 𝑐 𝜆̄〉 and 〈𝑢𝜈𝑢𝜌𝑆𝜇𝜆̄〉. As an example of the Feynman
diagrams which must be computed at one loop, we show in Fig. 1 those relevant to 〈𝑢𝜈𝑢𝜌𝑆𝜇𝜆̄〉. The
renormalization of 𝑇𝜇 involves the same Green’s functions, with 𝑆𝜇 replaced by 𝑇𝜇.

Figure 1: One-loop Feynman diagrams contributing to the three point Green’s function of the supercurrent,
〈𝑢𝜈𝑢𝜌𝑆𝜇𝜆̄〉 . A wavy (dashed) line represents gluons (gluinos). A cross denotes the insertion of the operator.
Diagrams 1, 2, 3, 5, 6, 11, and 13 do not appear in dimensional regularization, but they contribute in the
lattice regularization. Mirror versions of the diagrams must also be included.

3. Mixing matrix in Dimensional Regularization

We use the MS renormalization scheme in order to calculate the elements of the mixing matrix,
the first row of which renormalizes the supercurrent operator 𝑆𝜇. The divergent parts of the one-loop
contributions are expected to contain tensorial structures of the tree-level Green’s functions of the
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operators. Thus, in order to determine the renormalization and mixing coefficients we employ the
expressions for the tree-level two- and three-point Green’s functions of the operators 𝑆𝜇 and 𝑇𝜇 and
all gauge-noninvariant operators which could mix with them, with an operator insertion at point 𝑥.
The mixing matrix is a 14 × 14 block upper triangular matrix. The renormalized supercurrent can
be written as a linear combination of these operators:

𝑆𝑅𝜇 = 𝑍𝑆,𝑆𝑆
𝐵
𝜇 + 𝑧𝑆,𝑇𝑇

𝐵
𝜇 + 𝑧𝑆,𝐴1O𝐵

𝐴1 + 𝑧𝑆,𝐵1O𝐵
𝐵1 + 𝑧𝑆,𝐵2O𝐵

𝐵2 +
9∑︁
𝑖=1

𝑧𝑆,𝐶𝑖O𝐵
𝐶𝑖 (5)

Eq. (5) defines the first row of the mixing matrix. A similar expression holds for 𝑇𝑅
𝜇 . The

renormalization function 𝑍 = 11+O(𝑔2) and the mixing coefficients 𝑧 = O(𝑔2) should more properly
be denoted as 𝑍𝑋,𝑌 and 𝑧𝑋,𝑌 , where 𝑋 is the regularization and 𝑌 the renormalization scheme.
Superscript 𝐵 stands for bare and 𝑅 for renormalized quantities. We are interested in calculating the
one-loop renormalization function of 𝑆𝜇 and the mixing coefficients relevant to other operators with
equal/lower dimensionality. In order to calculate the one-loop renormalization function and the
mixing coefficients, we compute the amputated two-point Green’s function of 𝑆𝜇 with one external
gluino and one external gluon fields 〈𝑢𝜈 𝑆𝜇 𝜆̄〉𝑎𝑚𝑝, as well as three-point Green’s functions with
external gluino/ghost/antighost fields 〈𝑐 𝑆𝜇 𝑐 𝜆̄〉𝑎𝑚𝑝 and with external gluino/gluon/gluon fields
〈𝑢𝜈𝑢𝜌 𝑆𝜇 𝜆̄〉𝑎𝑚𝑝 (Fig. 1).

We need also the renormalization functions of the gluon, gluino, ghost and coupling constant:

𝑢𝑅𝜇 =
√︁
𝑍𝑢 𝑢

𝐵
𝜇 , 𝜆𝑅 =

√︁
𝑍𝜆 𝜆

𝐵 , 𝑐𝑅 =
√︁
𝑍𝑐 𝑐

𝐵 , 𝑔𝑅 = 𝑍𝑔 𝜇
−𝜖 𝑔𝐵 (6)

where 𝜇 is an arbitrary scale with dimensions of inverse length. For one-loop calculations, the
distinction between 𝑔𝑅 and 𝜇−𝜖 𝑔𝐵 is inessential in many cases; we will denote both by 𝑔 in those
cases. Our results are presented as functions of the MS scale 𝜇̄ which is related to 𝜇 through:
𝜇 = 𝜇̄

√︁
𝑒𝛾𝐸/4𝜋 (𝛾𝐸 = 0.57721 . . . is Euler’s constant).

The renormalization conditions involve the renormalization factors of the external fields as
well as parameters that show up in the bare GFs. The condition for the gluino-gluon GF of the
operator 𝑆𝜇 is:

〈𝑢𝑅𝜈 𝑆𝑅𝜇 𝜆̄𝑅〉𝑎𝑚𝑝 = 𝑍
−1/2
𝜆

𝑍
−1/2
𝑢 𝑍𝑆,𝑆 〈𝑢𝐵𝜈 𝑆𝐵𝜇 𝜆̄𝐵〉𝑎𝑚𝑝 + 𝑧𝑆,𝑇 〈𝑢𝐵𝜈 𝑇𝜇

𝐵 𝜆̄𝐵〉𝑡𝑟𝑒𝑒𝑎𝑚𝑝

+ 𝑧𝑆,𝐴1〈𝑢𝐵𝜈 O𝐵
𝐴1 𝜆̄

𝐵〉𝑡𝑟𝑒𝑒𝑎𝑚𝑝 + 𝑧𝑆,𝐵1〈𝑢𝐵𝜈 O𝐵
𝐵1 𝜆̄

𝐵〉𝑡𝑟𝑒𝑒𝑎𝑚𝑝

+ 𝑧𝑆,𝐵2〈𝑢𝐵𝜈 O𝐵
𝐵2 𝜆̄

𝐵〉𝑡𝑟𝑒𝑒𝑎𝑚𝑝 +
6∑︁
𝑖=1

𝑧𝑆,𝐶𝑖 〈𝑢𝐵𝜈 O𝐵
𝐶𝑖 𝜆̄

𝐵〉𝑡𝑟𝑒𝑒𝑎𝑚𝑝 + O(𝑔4) (7)

A similar condition holds for the operator 𝑇𝜇. Results for the renormalization of the external fields
and of the coupling constant have been already calculated in Ref. [2].

Imposing condition (7) on the two-point functions is sufficient in order to obtain the renormal-
ization of the supercurrent 𝑍𝑆,𝑆 . The pole part in the continuum results of the one-loop two-point
GF of 𝑆𝜇 (choosing zero momentum of the external gluino) is proportional to the tree-level GF of 𝑆𝜇
and thus there is no mixing with 𝑇𝜇, O𝐴1, O𝐶4, O𝐶5: 𝑧𝑆,𝑇 = 𝑧𝑆,𝐴1 = 𝑧𝑆,𝐶4 = 𝑧𝑆,𝐶5 = 0. Operators
O𝐶1 and O𝐶2 are of lower dimensionality and they will not mix in the continuum regularization:
𝑧𝑆,𝐶1 = 𝑧𝑆,𝐶2 = 0. Demanding that the left-hand side of Eq. (7) be finite leads to the determination
of 𝑍𝐷𝑅,MS

𝑆,𝑆
.
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The MS-renormalized GFs stemming from the calculation of all the above bare GFs are essential
ingredients in order to extract the lattice renormalization factors and mixing coefficients.

4. Mixing matrix on the lattice

We make use of the Wilson formulation on the lattice, with the addition of the clover (SW)
term for gluino fields. The Euclidean action S𝐿

SYM on the lattice becomes:

S𝐿
SYM = 𝑎4

∑︁
𝑥

[
𝑁𝑐

𝑔2

∑︁
𝜇,𝜈

(
1 − 1

𝑁𝑐

𝑇𝑟𝑈𝜇𝜈

)
+
∑︁
𝜇

(
𝑇𝑟

(
𝜆̄𝛾𝜇𝐷𝜇𝜆

)
− 𝑎𝑟

2
𝑇𝑟

(
𝜆̄𝐷2𝜆

))
−

∑︁
𝜇,𝜈

(
𝑐SW 𝑎

4
𝜆̄𝛼𝜎𝜇𝜈 𝐹̂

𝛼𝛽
𝜇𝜈 𝜆

𝛽

)
+ 𝑚0𝑇𝑟

(
𝜆̄𝜆

)]
(8)

The field strength tensor 𝐹̂𝛼𝛽
𝜇𝜈 in the adjoint representation and the covariant derivatives are defined

in a standard way (see, e.g., Ref. [2]).
The “Lagrangian mass”, 𝑚0, is a free parameter in principle and represents the bare gluino

mass. This term breaks supersymmetry softly. All renormalization functions which we will be
calculating, must be evaluated at vanishing renormalized mass, that is, when 𝑚0 is set equal to the
critical value ensuring a massless gluino in the continuum limit. However, since our calculations
are at one loop order this critical value is irrelevant, being already of order 𝑔2. Just as in the
continuum, a gauge-fixing term, together with the compensating ghost field term, must also be
added to the action; these terms are the same as in the non-supersymmetric case [3]. Similarly, a
standard “measure” term must be added to the action, in order to account for the Jacobian in the
change of integration variables: 𝑈𝜇 → 𝑢𝜇 . Further details of the lattice action can be found in
Ref. [4]. For the lattice discretization of operators 𝑆𝜇 and 𝑇𝜇 we employ a standard clover version
of the gauge field strength 𝑢𝜇𝜈 in the fundamental representation.

We have computed to 1 loop all 2- and 3-pt lattice Green’s functions mentioned above, thus
providing an evaluation of the MS renormalization functions and mixing coefficients, independently
of the method presented below. The renormalization functions 𝑍𝐿,MS can be readily extracted from
these functions. These results, along with comparisons with the non-perturbative determinations
described below, will be presented in a longer write-up of this work.

5. GIRS scheme

In order to extract non-perturbative physical results from numerical simulations on the lattice,
we employ a non-perturbative gauge-invariant renormalization scheme (GIRS) [5], which is ap-
plicable in both continuum and lattice regularizations so as to make contact with the continuum
schemes. In particular, we consider Green’s functions which involve products of two gauge-invariant
operators, O1 , O2 , at distinct spacetime points, in such a way as to avoid potential contact terms:

〈O1(𝑥) O2(𝑦)〉, (𝑥 ≠ 𝑦). (9)

5
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Only the mixing of gauge-invariant operators is relevant in this case, resulting in a 2 × 2 mixing
matrix, which relates the bare to the renormalized operators 𝑆𝜇 and 𝑇𝜇 :

©­«
𝑆𝑅𝜇

𝑇𝑅
𝜇

ª®¬ = ©­«
𝑍𝑆𝑆 𝑍𝑆𝑇

𝑍𝑇 𝑆 𝑍𝑇𝑇

ª®¬ ©­«
𝑆𝐵𝜇

𝑇𝐵
𝜇

ª®¬ . (10)

In order to determine the 4 elements of the mixing matrix 𝑍 we need 4 conditions.

• Three conditions can be imposed by considering expectation values between the two mixing
operators:

𝐺𝑆 𝑆
𝜇𝜈 (𝑥, 𝑦) ≡ 〈𝑆𝜇 (𝑥) 𝑆𝜈 (𝑦)〉 , 𝐺𝑇 𝑇

𝜇𝜈 (𝑥, 𝑦) ≡ 〈𝑇𝜇 (𝑥) 𝑇 𝜈 (𝑦)〉 , 𝐺𝑆𝑇
𝜇𝜈 (𝑥, 𝑦) ≡ 〈𝑆𝜇 (𝑥) 𝑇 𝜈 (𝑦)〉.

(11)
In explicit form, the bar (charge conjugate) operators are:

𝑆𝜇 ≡ tr𝑐 ( 𝜆̄𝑢𝜈 𝜌)𝛾𝜇𝜎𝜈𝜌 , 𝑇 𝜇 ≡ 2 tr𝑐 ( 𝜆̄𝑢𝜇 𝜈)𝛾𝜈 . (12)

• A fourth condition can be obtained by considering two-point Green’s functions involving
products of 𝑆𝜇 (or 𝑇𝜇) with other gauge-invariant operators, such as the Gluino-Glue operator
O, e.g.:

𝐺O 𝑆
𝜇 (𝑥, 𝑦) ≡ 〈O(𝑥) 𝑆𝜇 (𝑦)〉, (13)

where O ≡ 𝜎𝜇𝜈 tr𝑐 ( 𝑢𝜇𝜈𝜆).

• A condition for calculating the renormalization factor of O, can be obtained by considering
the two-point Green’s function involving the product of two Gluino-Glue operators.

Below, we present our one-loop results for the MS-renormalized Green’s functions in dimen-
sional renormalization. We note that the evaluation of these Green’s functions to order 𝑔2𝑛 involves
diagrams with (𝑛 + 1) loops. This is a non-negligible price to pay. However, all these diagrams in-
volve massless fields and (upon expressing them in momentum space) only one incoming/outgoing
momentum and thus can be evaluated to very high perturbative order.

[
𝐺𝑆 𝑆

𝜇𝜈 (𝑥, 𝑦)
]MS

=
2(𝑁2

𝑐 − 1)
3𝜋4(𝑧2)4 (3 − 5

𝑔2
MS

16𝜋2 𝑁𝑐) (4𝑠 [3]𝜇𝜈 + 𝑠
[4]
𝜇𝜈 ), (14)

[
𝐺𝑇 𝑇

𝜇𝜈 (𝑥, 𝑦)
]MS

=
(𝑁2

𝑐 − 1)
6𝜋4(𝑧2)4

[
(3 − 5

𝑔2
MS

16𝜋2 𝑁𝑐)2(2𝑠 [3]𝜇𝜈 − 𝑠
[4]
𝜇𝜈 )

+ 9
𝑔2

MS
16𝜋2 𝑁𝑐

(
2𝑠 [1]𝜇𝜈 + 2𝑠 [2]𝜇𝜈 − 3(3 + 4𝛾𝐸 − 4 ln(2) + 2 ln( 𝜇̄2𝑧2))𝑠 [4]𝜇𝜈

)]
, (15)[

𝐺𝑆𝑇
𝜇𝜈 (𝑥, 𝑦)

]MS
=

(𝑁2
𝑐 − 1)

3𝜋4(𝑧2)4

[
(3 − 5

𝑔2
MS

16𝜋2 𝑁𝑐) (4𝑠 [3]𝜇𝜈 + 𝑠
[4]
𝜇𝜈 ) + 18

𝑔2
MS

16𝜋2 𝑁𝑐 (𝑠 [2]𝜇𝜈 − 𝑠
[4]
𝜇𝜈 )

]
, (16)

[
𝐺O 𝑆

𝜇 (𝑥, 𝑦)
]MS

=
(𝑁2

𝑐 − 1)
𝜋4(𝑧2)4 12

𝑔2
MS

16𝜋2 𝑁𝑐 𝜎𝜇𝜌 𝑧𝜌, (17)

6
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where 𝑧 ≡ 𝑦 − 𝑥 and we have used the following notation:

𝑠
[1]
𝜇𝜈 (𝑧) ≡ 𝛾𝜇𝑧𝜈 , 𝑠

[2]
𝜇𝜈 (𝑧) ≡ 𝛾𝜈𝑧𝜇 , 𝑠

[3]
𝜇𝜈 (𝑧) ≡ (𝛿𝜇𝜈 − 2

𝑧𝜇𝑧𝜈

𝑧2 ) 6𝑧 , 𝑠
[4]
𝜇𝜈 (𝑧) ≡ 𝛾𝜇 6𝑧𝛾𝜈 (18)

Note that in the presence of mass, the above Green’s functions may also contain the structures of
Eq.(18) multiplied by an extra 6𝑧.

There is a variety of ways to impose renormalization conditions in GIRS. In what follows,
we consider the following set of conditions, in which we integrate over the spatial components of
𝑧 = 𝑦 − 𝑥 = (®𝑧, 𝑡) :∫

𝑑3®𝑧 Tr{
[
𝐺𝑆 𝑆

𝜇𝜈 (𝑥, 𝑦)
]GIRS

𝑃𝜈𝜇} =

∫
𝑑3®𝑧 Tr{

[
𝐺𝑆 𝑆

𝜇𝜈 (𝑥, 𝑦)
] tree

𝑃𝜈𝜇}, (19)∫
𝑑3®𝑧 Tr{

[
𝐺𝑇 𝑇

𝜇𝜈 (𝑥, 𝑦)
]GIRS

𝑃𝜈𝜇} =

∫
𝑑3®𝑧 Tr{

[
𝐺𝑇 𝑇

𝜇𝜈 (𝑥, 𝑦)
] tree

𝑃𝜈𝜇}, (20)∫
𝑑3®𝑧 Tr{

[
𝐺𝑆𝑇

𝜇𝜈 (𝑥, 𝑦)
]GIRS

𝑃𝜈𝜇} =

∫
𝑑3®𝑧 Tr{

[
𝐺𝑆𝑇

𝜇𝜈 (𝑥, 𝑦)
] tree

𝑃𝜈𝜇}, (21)∫
𝑑3®𝑧 Tr{

[
𝐺𝑆 O

𝜇 (𝑥, 𝑦)
]GIRS

𝑃𝜇} =

∫
𝑑3®𝑧 Tr{

[
𝐺𝑆 O

𝜇 (𝑥, 𝑦)
] tree

𝑃𝜇}. (22)

where 𝑃𝜈𝜇, 𝑃𝜇 are projectors acting on the Dirac space; the repeated indices 𝜇, 𝜈 are not summed
over. There are various options for the choice of indices, some of which may be better than others
from the simulation point of view. In particular,

• in Eq. (22) there are 2 options: 𝜇 = 𝑡 or 𝑠 [where t (s) denotes temporal (spatial) direction],

• in Eqs. (19 – 21) there are a priori 5 options for each condition: 𝜇 = 𝜈 = 𝑡, 𝜇 = 𝜈 = 𝑠,
(𝜇 = 𝑡, 𝜈 = 𝑠), (𝜇 = 𝑠, 𝜈 = 𝑡), (𝜇 = 𝑠, 𝜈 = 𝑠′) [where 𝑡, 𝑠, 𝑠′ are temporal and two different
spatial directions, respectively].

In all the above choices, the projectors which can lead to a solvable system of conditions, are:

𝑃𝜈𝜇 = 𝛾𝜈𝛾4𝛾𝜇 , 𝑃𝜇 = 𝛾4𝛾𝜇 (23)

The conversion factors between the MS and GIRS scheme follow immediately from Eqs.(14 –
22).

As we are interested in applying GIRS in lattice simulations, the scale 𝑡 may be chosen to
satisfy the condition 𝑎 � |𝑡 | � Λ−1

SYM, where 𝑎 is the lattice spacing and ΛSYM is the SYM physical
scale; this condition guarantees that discretization effects will be under control and simultaneously
we will be able to make contact with (continuum) perturbation theory.

6. Non-perturbative results

As a first test of the non-perturbative determination, we have considered SU(2) N = 1 SYM
with the lattice action (8). The gluinos are described by Wilson fermions (𝑟 = 1) in the adjoint
representation. The Wilson-Dirac operator of Eq. (8) takes hence the following form,

𝐷𝑤 = 1 − 𝜅
[
(1 − 𝛾𝜇) (𝑉𝜇 (𝑥))𝛿𝑥+𝜇,𝑦 + (1 + 𝛾𝜇) (𝑉†

𝜇 (𝑥 + 𝜇))𝛿𝑥−𝜇,𝑦
]
,

7
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where the gauge links are in the adjoint representation. The hopping parameter 𝜅 is related to the
bare gluino mass 𝑚0 by 𝜅 = 1/(2𝑚0 + 8).

The ensemble of gauge configurations has been generated in earlier studies and presented first in
[6]. The lattice size is 𝑁𝑠 = 24 in spatial and 𝑁𝑡 = 48 in temporal direction. For a further reduction
of lattice artefacts, a tree-level Symanzik improved plaquette action and stout smeared links in the
Dirac operator are used. The mass parameter and the inverse gauge coupling are 𝜅 = 0.14925 and
𝛽 = 1.75. Further details can be found in [6]. The sign problem appearing for simulations with
Majorana fermions, see [7], is not relevant for the considered parameters.

We have computed the bare correlation functions between the supercurrent operators (12)
for time-like separations (𝜇 = 4) and the gluino-glue operator defined with only spatial indices
O ≡ 𝜎𝑖 𝑗 tr𝑐 ( 𝑢𝑖 𝑗𝜆).
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Figure 2: Correlation functions integrated over the spatial component as appearing in Eqs. (19 – 22),
including the operator O ≡ 𝜎𝑖 𝑗 tr𝑐 ( 𝑢𝑖 𝑗𝜆) on a 24𝑥48 lattice.

We have applied the GIRS conditions Eqs. (19 – 22) to obtain the renormalized correlation
functions from the lattice data. For a first preliminary result, we just focused on the renormalization
properties of the 𝑆 and 𝑂 operator

𝑆𝑟𝑒𝑛𝜇 = 𝑍𝑆𝑆
𝑏𝑎𝑟𝑒
𝜇 + 𝑍𝑇𝑇

𝑏𝑎𝑟𝑒
𝜇 , O𝑟𝑒𝑛 = 𝑍OO𝑏𝑎𝑟𝑒,

which in Eq. (22)

∫
𝑑3®𝑧𝑍O (𝑍𝑆Tr[𝐺𝑆O

𝜇 (𝑧)𝑃𝜇]𝑏𝑎𝑟𝑒 + 𝑍𝑇 Tr[𝐺𝑇 O
𝜇 (𝑧)𝑃𝜇]𝑏𝑎𝑟𝑒) =

∫
𝑑3®𝑧Tr[𝐺𝑆O

𝜇 (𝑧)𝑃𝜇]𝑡𝑟𝑒𝑒 = 0.

From here we see that the 𝑍O renormalization factor drops out and, using only the 𝐺𝑆O and 𝐺𝑇 O
data, we can already solve for the 𝑍𝑇 /𝑍𝑆 quotient at each time slice 𝑡 (Fig. 3). We observe a
plateau-like behaviour of 𝑍𝑇 /𝑍𝑆 in the interval 𝑡 ∈ [4, 6]. This is in accordance with the fact that
the final renormalization factors should be independent of the time separation 𝑡.

As already mentioned, for this first numerical test we used the spatial operatorO ≡ 𝜎𝑖 𝑗 tr𝑐 ( 𝑢𝑖 𝑗𝜆),
however also time components are needed in order to apply the GIRS condition Eq. (22). This
complete analysis is left for the further final studies.

Remarkably, the signal to noise ratio at the considered time separations is relatively low
and further improvements are expected with a full statistics and applying the complete GIRS
renormalization conditions Eqs. (19 – 22). With the current preliminary data, we have not done a
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Figure 3: 𝑍𝑇 /𝑍𝑆 as a function of time separation 𝑡 obtained through a Jackknife analysis. The relevant data
values of the plot lie on the interval 𝑡 ∈ [4, 6], where 𝑡 is big enough such that contact terms are suppressed
and small enough such that the statistical fluctuations are not strongly overcoming the signal.

full conversion to MS scheme. However, the current data is already promising and we are currently
working towards a full non-perturbative determination of the renormalization factors.
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