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In lattice quantum chromodynamics with chiral fermions we want to solve linear systems which 

are chiral and dense discretizations of the Dirac operator, or the overlap operator. We propose that 

multigrid solver are the best choice to solve quickly this linear systems. In this paper we develop 

a two-grid algorithm. For this purpose, we use the equivalence of the overlap operator with the 

truncated overlap operator, which is a five dimensional formulation of the same theory. The 

coarsening is performed along the fifth dimension only. We have tested first this algorithm for 

small lattice volume 8^4 and we bring here our results for larger lattice size 16^4.  We have done 

simulation in the range of coupling constants and quark masses for which the algorithm is fast and 

saves a factor of 6, even for dense lattice, compared to the standard Krylov subspace methods. 
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1. Introduction 

 

 In the lattice QCD, quark fields or fermion fields are placed at the lattice nodes, and gluon 

fields, or calibration fields, are placed at the connections between nodes. To study the interactions 

between quarks one must calculate the quark propagator that is mathematically the inverse of the 

Dirac operator. It is important to formulate a lattice chiral fermion theory as chiral symmetry is 

characteristic of strong interactions. Thus, in this article we will calculate the propagators of lat-

tice chiral quarks by means of a Dirac chiral operator, such as the Neuberger overlap operator. 

Since this operator connects two subspaces by means of transcendental operational functions, as 

will be discussed below, the computational methods are also highly complex.  

 In this article we bring a faster calculation method than the standard ones, the so called the 

two-grid algorithm method, which speeds up the solution thanks to the more efficient approxima-

tion of the Dirac operator's low eigenvalues [11]. This algorithm was proposed a decade ago but 

has only been tested for a single pairing constant [1]. In this paper he will study a set of values of 

pairing constants of the calibration field and for larger lattice volume. The aim is to build and test 

the algorithm with two networks for different values of the pairing constant of the calibration 

fields and for quark masses even lighter than in the reference [1]. The algorithm will be compared 

to a standard algorithm, often used in network QCD as one of the fastest methods to calculate 

network quark spreaders, the Conjugate Gradients algorithm for normal equations or CGNE (Con-

jugate Gradients on Normal) Equation) [7].  

1.1 Chiral fermions using the Neuberger operator  

In 1982, Ginsparg and Wilson concluded that a Dirac chiral operator could be found in the 

lattice who meets the condition called the Ginsparg-Wilson relationship [6].  

                                            {𝐷, 𝛾5} = 𝑎𝐷𝛾5𝐷                                                                  (1) 

We note that in the continuous boundary the relation to chirality is recovered. One candidate 

operator that completes this relationship is the Neuberger overlap operator [10]: 

                                               𝐷 = 𝑐1𝐼 − 𝑐2𝑉,                                                                    (2) 

where is a unitary matrix, 𝐼 is the identity matrix and 𝐴 = 𝑀 − 𝑎𝐷𝑊. The overlap operator 𝐷 is 

non-Hermitian operator. This operator can also be expressed equivalently using the sign function, 

                                                      𝐷 = 𝑐1𝐼 − 𝑐2𝛾5𝑠𝑖𝑔𝑛(𝐻𝑊)                                                        (3) 

where 𝐻𝑊 = 𝛾5(𝑀 − 𝑎𝐷𝑊), M is a shift parameter in the interval (0,2), which we have fixed 𝑀 =

1.8 in the case of our study, 𝑐1dhe 𝑐2 are two constants that are determined by equations, 𝑐1 =
1+𝑚𝑞

2
,  and  𝑐2 =

1−𝑚𝑞

2
. Where 𝑚𝑞is the quark mass and 𝐷𝑊 is the Wilson-Dirac operator, 

                                    𝐷𝑊 =
1

2
∑ [𝛾𝜇(𝜕𝜇

∗ + 𝜕𝜇) − 𝑎𝜕𝜇
∗𝜕𝜇]𝜇                                                          (4) 

and 𝜕𝜇, 𝜕𝜇
∗ are the forward and backward differences operators, closest neighbors: 

     𝜕𝜇𝑓(𝑥) =
1

𝑎
(𝑓(𝑥 + 𝑎𝑒𝜇) − 𝑓(𝑥)),            𝜕𝜇

∗𝑓(𝑥) =
1

𝑎
(𝑓(𝑥) − 𝑓(𝑥 − 𝑎𝑒𝜇)),                                (5) 

where 𝑒𝜇 are orientation orts by direction 𝜇.𝛾𝜇 are matrices 4 x 4 who obey Clifford-Dirac algebra. 

Thus, if the lattice has N nodes, since the calibration fields take values in the SU(3) group, then 

the Dirac matrix in the lattice is of the order 12N. The advantages of Neuberger chiral fermions 

are: a) the chiral symmetry of the lattice QCD is exact since the action of the fermions is invariant 

to chiral transformations [8], we notice that the anticommutation relation (1), when we switch to 
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continuous QCD, thus for a → 0, gives the condition of chiral symmetry as it should be in 

continuous space-time; b) we have fermion theory without doubling, fermions are defined in a 

single way. The problems encountered in this study method are related to the high computational 

complexity, due to the complicated form, as a matrix function, of the Neuberger operator.  

1.2 Truncated overlap fermions 

The Neuberger overlap fermions are equivalent to the truncated overlap fermions, in a 5-

dimensional formulation, with the fifth Euclidean dimension N5 [3]. Through this equivalence it 

becomes possible to adapt and use multigrid according to the fifth dimension. The basic idea is 

the division into space according to an additional dimension of the left and right chirality defined 

on the two opposite sides of the border or domain wall. Along the fifth dimension we have no 

calibration fields. The Dirac operator is now given as a matrix with N5 x N5 4-dimensional 

operating blocks. 

 

Μ𝑇𝑂𝑉(𝑚𝑞) =

(

 
 

𝑎5𝐷𝑊 − 𝐼 (𝑎5𝐷𝑊 + 𝐼)𝑃+ −𝑚𝑞(𝑎5𝐷𝑊 + 𝐼)𝑃−
(𝑎5𝐷𝑊 + 𝐼)𝑃− 𝑎5𝐷𝑊 − 𝐼 ⋱

⋱ ⋱ (𝑎5𝐷𝑊 + 𝐼)𝑃+
−𝑚𝑞(𝑎5𝐷𝑊 + 𝐼)𝑃+ (𝑎5𝐷𝑊 + 𝐼)𝑃− 𝑎5𝐷𝑊 − 𝐼 )

 
 

            

 

                                                                                                                                                    (6) 

where 𝑎5 is the lattice parameter according to the 5th dimension and 𝑃± are the chirality projection 

operators given by: 𝑃± =
𝐼4±𝛾5

2
. Such fermions are called domain wall fermions (DWF)[12].  

The question that arise naturally is: "Are domain wall fermions somehow related to the 

overlap fermions?" To answer this question, effective theory must be constructed in four 

dimensions. For this we find the form of Dirac's effective operator, D(N5), in four dimensions [3], 

from which we have:  

                     𝐷(𝑁5) =
1+𝑚𝑞

2
𝐼 −

1−𝑚𝑞

2
𝛾5 𝑡𝑎𝑛ℎ (

𝑁5

2
𝑙𝑜𝑔 (

1−𝑎5𝐻𝑊

1+𝑎5𝐻𝑊
)),                                      (7) 

where 𝐻𝑊 = 𝛾5(𝑀 − 𝑎𝐷𝑊). In continuum limit 𝑁5 → ∞ we have operator: 

                                   𝐷(∞) =
1+𝑚𝑞

2
𝐼 −

1−𝑚𝑞

2
𝛾5𝑠𝑖𝑔𝑛(𝐻𝑊).                                                   (8) 

2.   The TWO-GRID algorithm  

 

An efficient way for solving linear systems arising from differential equations in 

the lattice is the use of Multigrid Algorithms [11]. In this paper we will apply the two-

grid algorithm according to the fifth dimension in the case of the truncated overlap 

fermions. So, we want to solve the linear system:  

                                                                      𝐷𝑥 = 𝑏,                                                               (9) 

where D is the overlap operator or Neuberger operator, the right-hand side or quark 

source, and x are the quark propagators. In order to use the two-grid algorithm we use the 

equivalence of the overlap operator with truncated overlap operator. Thus, the coarse 

lattice system:  

                                                                    𝐷(𝑁5)𝑦 = 𝑟,                                                          (10) 
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can be obtained from the 5-dimensional system solution: 
 

                                                𝑀𝑇𝑂𝑉(𝑚𝑞)𝑃𝜒 = 𝑀𝑇𝑂𝑉(1)𝑃𝜂,                                               (11) 

                               

with P we denote the permutation matrix:  

𝑃 =

(

 

𝑃+ 𝑃−
𝑃+ ⋱

⋱ 𝑃−
𝑃− 𝑃+)

  

where from the vectors 𝜒 and 𝜂, 𝜒 = (𝑦, 𝜒(2), . . . , 𝜒(𝑁5))𝑇 and  𝜂 = (𝑟, 𝑜, . . . , 𝑜)𝑇 , the y and 

r vectors of the coarse lattice system are determined. Below we present the TWO-GRID 

algorithm that we have developed to solve this problem:  
 

The TWO-GRID algorithm 

_________________________________________________________________________ 

Let them be 𝑥1 ∈ 𝐶
𝑁  and  𝑟1 = 𝑏 − 𝐷𝑥1. 

We assign two tolerances: 𝑡𝑜𝑙 for the system in the dense lattice and 𝑡𝑜𝑙0 for the 
system in the coarse lattice. 
 for i=1,2, ... do 

    Form the sparse lattice vector 𝜂𝑖 = (𝑟𝑖, 𝑜, . . . , 𝑜)
𝑇, where the number of zero vectors 4-              

    dimensions it is 𝑁5 − 1. 
    Solve the linear system  𝑀𝑇𝑂𝑉(𝑚𝑞)𝑃𝜒𝑖+1 = 𝑀𝑇𝑂𝑉(1)𝑃𝜂𝑖  until the residual is less        

than     𝑡𝑜𝑙0‖𝑀𝑇𝑂𝑉(1)𝑃𝜂𝑖‖2. 
    We derive the correction of the approximate 4-dimensional solution 𝑦𝑖+1 from that 5-                    

dimensional      𝜒𝑖+1 = (𝑦𝑖+1, 𝜒𝑖+1
(2)
, . . . , 𝜒𝑖+1

(𝑁5))𝑇 . 

     Update the solution on the 4-dimensional lattice   𝑥𝑖+1 = 𝑥𝑖 + 𝑦𝑖+1 

     We calculate the residual lattice 𝑟𝑖+1 = 𝑏 − 𝐷𝑥𝑖+1. 
     Stop if  ‖𝑟𝑖+1‖2 < 𝑡𝑜𝑙‖𝑏‖2.  
end for 
_____________________________________________________________________________ 

 

We coded the above algorithm in MATLAB/Octave. As expected, due to the complex 

shape of the Neuberger operator, computer calculations require a lot of physical time. 

Thus, an inversion with the CGNE algorithm takes about 60 minutes on the Intel (R) Core 

(TM) 2 Duo CPU T5470@1.60GHz. That's why we turned to FORTRAN codes which 

takes about 20 minutes on the same processor.  

3.   Results and Discussions  

 
In addition to the above algorithm coded in MATLAB/Octave, several ready-made 

QCDLAB package functions have been used [4], one of which is the CGNE (Conjugate Gradients 

on Normal Equation) algorithm. The purpose of its use is to compare with the two-grid algorithm. 

Both algorithms are calculated in fixed calibration field, in lattice volume 164, with calibration 

field coupling constants β = 6 ∕g2 from β = 5.8 to β = 5.5, with step 0.1. For a fixed value of this 

parameter, we tested the two grid algorithm for different quark masses, starting from heavy mass 

quarks 0.13 to lighter quarks with mass 0.03 with step 0.01. It was observed that for each fixed 



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
4
0

Two-grid overlap solver in lattice QCD D.Xhako et.al 

 

5 

value of the pairing constant, the masses of the quarks for which the two-grid algorithm works 

varies from one configuration to another. We summarize the results in the following tables for 

each configuration, which give a clear picture of the different quark masses, the number of 

multiplications by the Wilson matrix, and the residual rate in each step. In our calculations we 

have determined the accuracy of the order 10-8. The residual rate values with the smallest sign (<) 

means that for the corresponding quark mass the two-grid algorithm increases the accuracy 

required by us. Whereas the quark masses without the  <  sign, have a stagnation of residual values 

quoted in the table. We will consider that the two-grid algorithm does not converge for these quark 

masses. Specifically, for the first configuration obtained for β = 5.8, referring to the data in Table 

1, it is seen that our algorithm converges for quark masses m = 0.09, m = 0.07, m = 0.06, m = 

0.03, for others quark masses have stagnation. In the second configuration obtained for β = 5.7, 

referring to the data in Table 2, the two-lattice algorithm converges for quark masses m = 0.12, m 

= 0.09, for others quark masses have stagnation. In the third configuration obtained for β = 5.6, 

referring to the data in Table 3, the two-lattice algorithm converges for quark masses m = 0.12, m 

= 0.11, m = 0.07, m = 0.06, for other masses we have stagnation. In the fourth configuration 

obtained for β = 5.5, referring to the data in Table 3, the two-lattice algorithm converges for quark 

masses m = 0.13, m = 0.11, m = 0.1, m = 0.09, m = 0.08, m = 0.05, for other measures we have 

stagnation. In parallel, the same procedure was performed with the CGNE algorithm. The 

obtained results are presented in the following graphs, where the convergence history of the two-

grid algorithm (TWO-GRID) and that of CGNE is given as a function of the number of 

multiplications performed with the Wilson matrix. Figure 1 is taken for the first configuration 

generated with coupling constant β = 5.8 and different quark masses as shown in the figure. 

Similarly Figure 2 gives the convergence history of the two algorithms for coupling constant β = 

5.7, Figure 3 for β = 5.6 and Figure 4 for β = 5.5.  

 

 

Figure 1. The convergence history of the residual norm as the function of the number of Dirac-Wilson 

multiplications for TWO-GRID and CGNE algorithms on 164 lattice background SU(3) field at coupling 

constant β=5.8 . 
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Figura 2. The convergence history of the residual norm as the function of the number of Dirac-Wilson 

multiplications for TWO-GRID and CGNE algorithms on 164 lattice background SU(3) field at coupling 

constant β=5.7. 

 

 

 

 

Figure 3. The convergence history of the residual norm as the function of the number of Dirac-Wilson 

multiplications for TWO-GRID and CGNE algorithms on 164 lattice background SU(3) field at coupling 

constant β=5.6. 
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Figure 4.  The convergence history of the residual norm as the function of the number of Dirac-Wilson 

multiplications for TWO-GRID and CGNE algorithms on 164 lattice background SU(3) field at coupling 

constant β=5.5. 
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Table 2.  Data obtained from the convergence history of the TWO - GRID algorithm for the configuration 
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0.06 24240 10-5 

0.05 24240 10-5 

 

Table 3.  Data obtained from the convergence history of the TWO - GRID algorithm for the configuration 

with coupling constant 5.6. 

Quark mass The number of Dirac-Wilson multiplications Residual norm 

0.13 7512 10-5 

0.12 12108 <10-8 

0.11 13098 <10-8 

0.1 8958 10-5 

0.09 10080 10-5 

0.08 11286 10-5 

0.07 18282 <10-8 

0.06 20076 <10-8 

0.05 15612 10-5 

 

Table 4. Data obtained from the convergence history of the TWO - GRID algorithm for the configuration 

with coupling constant 5.5. 

Quark mass The number of Dirac-Wilson multiplications Residual norm 

0.13 11430 <10-8 

0.12 7674 10-5 

0.11 12948 <10-8 

0.1 14118 <10-8 

0.09 15312 <10-8 

0.08 17400 <10-8 

0.07 12378 10-5 

0.06 14670 10-5 

0.05 25452 <10-8 

 

It is clear that the two-grid algorithm for each configuration is about 6 times faster than 

the CGNE for those quark masses to which it converges. These preliminary results show that the 

two-grid algorithm is very promising. Before giving final conclusions, we will first have to find 

the origin of the non-convergence for certain measures. Our calculations do not show any 

regularity which leads us to believe that we are dealing with a lack of algorithm instability, an 

instability that we need to study in the future before advancing the study in even larger lattice 

volumes. 
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