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We introduce a newnon-perturbativemethod to tune the parameters of theColumbia formulation of
an anisotropic, clover-improved relativistic heavy-quark (RHQ) action. By making use of suitable
observableswhich can be computed at a sequence of heavy-quarkmass values, employing anO(a)-
improved discretized action with domain-wall chiral fermion, and safely interpolated between the
accessible heavy-quark mass region and the static point predicted by heavy-quark effective theory,
we are able to precisely determine the unknown coefficients of the RHQ action. In this proof-
of-principle study we benefit from the RBC/UKQCD Iwasaki gauge configurations with 2 + 1
flavors of dynamical quarks, at three values of the lattice spacing varying from 0.11 to 0.062 fm.
Preliminary results and applications to bottom spectroscopy are also presented.
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1. Introduction

Precise knowledge of mass spectrum, decay, and mixing properties of hadrons containing one
or more bottom or charm quarks is essential to advancing our understanding of the parameters
of the Standard Model. Lattice QCD provides methods to compute these quantities from first
principles. However, lattice calculations with heavy quarks present special difficulties since in full
QCD calculations, which properly include the effects of dynamical quarks, it is often impractical to
use a sufficiently small lattice spacing to control the O(ma)n discretization errors directly. This is
especially true for the more compute-intensive lattice fermion formulations where the light quarks
are treated in a fashion respecting chiral symmetry (such as domain-wall or overlap fermions).
These problems are addressed by using a number of improved heavy-quark actions designed to
control or avoid these potentially important finite lattice spacing errors.

One way to address this challenge is to adopt the Fermilab or relativistic heavy-quark (RHQ)
method [1–3] in which extra axis-interchange asymmetric terms are added to the usual relativistic
action. This action can accurately describe heavy-quark systems provided the improvement coeffi-
cients it contains are properly adjusted. As the heavy-quark mass decreases, this action goes over
smoothly to the O(a)-improved fermion action of Sheikholeslami andWohlert (SW) [4]. The RHQ
action applies for all values of the heavy-quark mass mQ, for both heavy-heavy and heavy-light
systems, and allows a continuum limit. Once improved, it accurately describes energies and ampli-
tudes of on-shell states containing heavy quarks whose spatial momentum ~p is small compared to
the inverse lattice spacing. It can be shown [3] that all errors of order |~pa |, (mQa)n and |~pa |(mQa)n

for all non-negative integers n can be removed if an anisotropic, clover-improved Wilson action is
used for the heavy quark. This action depends on three relevant parameters: the bare quark mass
m0, an anisotropy parameter ζ and the coefficient cP of an isotropic Sheikholeslami and Wohlert
term.

In order to exploit this RHQ approach, values for these three parameters are needed. The bare
charm or bottom quark mass, m0, is determined from experiment, usually by equating the known
mass of a physical state containing one or two heavy quarks with the mass determined from a lattice
calculation with the RHQ action. The remaining two parameters, ζ and cP, may be estimated
from lattice perturbation theory or determined with a non-perturbative technique. The authors of
Ref. [5] have proposed to determine ζ and cP non-perturbatively by imposing two simple conditions.
The first condition is the often-exploited requirement that the energy of a specific heavy-heavy or
heavy-light state depend on that state’s spatial momentum in a fashion consistent with continuum
relativity: E(~p)2 = ~p2 + M2. The second constraint is that a specific mass splitting agree with its
experimental value.

However, this approach has the disadvantage that a possible experimental prediction from
lattice QCD, a non-trivial spin-spin splitting, cannot be made. In this work, starting from the latter
observation, we propose a new strategy to tune the parameters of the RHQ action allowing not
to sacrifice lattice predictivity. In particular, we compute the hyperfine mass splitting of a heavy-
quark system at a sequence of mQ values using the O(a)-improved action of domain-wall chiral
fermions (DWF) and then we safely interpolate between the accessible heavy-quark mass region
and the static point predicted by heavy-quark effective theory (HQET) to determine the value of the
mass splitting. That lattice determination is then used as an input to compute the RHQ parameters
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non-perturbatively.
As is described below, these three conditions yield quite precise results for the three unknown

parameters. This new tuning approach has the additional advantage that tuned RHQ parameters
can be predicted for any heavy-hadron mass. In the final section of this manuscript results and
applications to bottom spectroscopy are also presented. These determinations can be viewed as
tests of QCD and can be used to explore the accuracy and limitations of the RHQ approach.
Preliminary results show that an extension of the new method to non-perturbative renormalization
and operator improvement in a position-space scheme is possible, thus paving the way to the
computation of phenomenologically-important charm and bottom decay constants and mixing
matrix elements, which are needed for determinations of CKM matrix elements and constraints on
the CKM unitarity triangle. Dedicated investigations along those lines and preliminary applications
to radiative leptonic decays of heavy pseudoscalar mesons [6, 7] are currently underway.

2. Heavy-quark action

The RHQ method provides a consistent framework for describing both light quarks (am0 � 1)
and heavy quarks (am0 ≈ 1) [1–3]. This approach relies upon the fact that, in the rest frame of
bound states containing one or more heavy quarks, the spatial momentum carried by each heavy
quark is smaller than the mass of the heavy quark: for heavy-heavy systems |~p| ∼ αsm0 and for
heavy-light systems |~p| ∼ ΛQCD. Then one can perform the usual Symanzik expansion in powers
of the spatial derivative Di (which brings down powers of a~p). Terms of all orders in the mass
m0a and the temporal derivative D0 must however be included. Thus, a suitable lattice formulation
for heavy quarks should break the axis-interchange symmetry between the spatial and temporal
directions.

In this work we adopt the same anisotropic clover-improved Wilson action for heavy quarks as
in [5]:

Slat = a4
∑
x,x′

ψ̄(x ′) *.
,
m0 + γ0D0 + ζ~γ · ~D −

a
2

(D0)2 −
a
2
ζ ( ~D)2 +

∑
µ,ν

ia
4

cPσµνFµν
+/
-x′x

ψ(x) , (1)

where

Dµψ(x) =
1

2a

[
Uµ (x)ψ(x + µ̂) −U†µ (x − µ̂)ψ(x − µ̂)

]
, (2)

D2
µψ(x) =

1
a2

[
Uµ (x)ψ(x + µ̂) +U†µ (x − µ̂)ψ(x − µ̂) − 2ψ(x)

]
, (3)

Fµνψ(x) =
1

8a2

∑
s,s′=±1

ss′
[
Usµ (x)Us′ν (x + s µ̂)U†sµ (x + s′ν̂)U†s′ν (x) − h.c.

]
ψ(x) , (4)

and γµ = γ†µ , {γµ, γν } = 2δµν and σµν = i
2 [γµ, γν]. Christ, Li, and Lin showed in Ref. [3] that

one can absorb all positive powers of the temporal derivative by allowing the coefficients cP and
ζ to be functions of the bare-quark mass m0a. Thus, by suitably tuning the three coefficients in
the action – the bare-quark mass m0a, anisotropy parameter ζ , and clover coefficient cP – one can
eliminate errors of O(|~p|a), O([m0a]n), and O(| ~pa |[m0a]n) from on-shell Green’s functions. The
resulting action can be used to describe heavy quarks with m0a ≈ 1 with discretization errors that
are comparable to those for light-quark systems.
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3. Simulation details

The parameters of the RHQ action suitable for describing heavy quarks depend upon the
choice of actions for the gauge fields and sea quarks. In this work we perform our numerical lattice
computations on the Nf = 2 + 1 flavor domain-wall fermion ensembles generated by the RBC
and UKQCD Collaborations [8–10]. These lattices include the effects of three light dynamical
quarks; the lighter two sea quarks are degenerate and we denote their mass by ml, while the heavier
sea quark, whose mass we denote by mh, is a little heavier than the physical strange quark. The
RBC/UKQCD lattices combine the Iwasaki action for the gluons [11] with the five-dimensional
domain-wall action for the fermions [12, 13].

We make use of several ensembles with different light sea-quark masses and lattice volumes, at
three values of the lattice spacing (from a−1 = 1.785 GeV to a−1 = 3.148 GeV). Tab. 1 summarizes
the main parameters.

ensemble (L/a)3 × (T/a) Ls/a ≈ a(fm) aml amh ≈ Mπ(MeV) Nconf

24I 243 × 64 16 0.11 0.005 0.04 340 37
24Ih 243 × 64 16 0.11 0.01 0.04 426 26
32I(u) 323 × 64 16 0.083 0.004 0.03 302 27
32Ifine 323 × 64 12 0.063 0.0047 0.0186 371 34

Table 1: Lattice simulation parameters used in this study. The columns list the lattice volume, extra fifth-
dimensional extent, approximate lattice spacing, light (ml) and strange (mh) sea-quark masses, approximate
unitary pion mass and number of configurations.

All ensembles use the Shamir action approximation to the sign function. Light quarks are
simulated at their unitary value amsea

l
= amval

l
whilst the valence strange quark masses are tuned

to their physical values as determined in Ref. [10] with the exception of the 32Iu ensemble where we
simulate at the unitary strange quark mass. All propagators are generated using Z2-wall sources and
all mode averaging (AMA) [14] with 6 sloppy and 1 exact samples per configuration is employed.

AMA helps us in improving the statistical precision of our correlation functions. This is
accomplished by computing correlators originating from many time slices spaced throughout the
temporal extent of the lattice. We compute reduced-precision (sloppy) correlation functions on all
of the time slices and to compute full-precision (exact) correlation functions only on a subset of
the time slices. The difference between sloppy and exact solves on some time slices may be used
as a correction for bias introduced by computing sloppy solves, and averages of sloppy solves on
the remaining time slices improve statistical uncertainties at a reduced cost compared to computing
exact solves for all time slices.

The ensembles listed in Tab. 1 have already been used to study the light pseudoscalar meson
sector; we can therefore take advantage of many results from this earlier work. The amount of chiral
symmetry breaking in the light-quark sector can be parameterized in terms of an additive shift to
the bare domain-wall quark mass called the residual quark mass. For all our ensembles, the size of
the residual quark mass is quite small (see Refs. [9, 10] for further details).
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4. Non-perturbative tuning of the RHQ action parameters

In this section we describe our new tuning approach to determine the RHQ parameters
{m0a, cP, ζ }. We decide to study heavy-strange systems since both discretization errors and chiral
extrapolation errors are expected to be small.

In particular, we start computing the hyperfine mass splitting ∆HQs = MH?
Qs
− MHQs of a

heavy-strange meson at a sequence of heavy-quark mass values (up to mQ ≈ mb/2) using the DW
action. For each ensemble of Tab. 1 we simulate a range of heavy-quark masses and compute the
mass splittings between vector and pseudoscalar states. Then, we interpolate between the available
lattice data and the known static point of ∆HQs predicted by HQET [15, 16] to determine the mass
splittings of heavy-strange systems.

We perform extrapolations to the continuum and infinite volume limits and to the physical pion
point (Mphys

π = 135 MeV) adopting the following combined phenomenological ansatz

∆HQs =
*.
,

A0
MHQs

+
A1

M2
HQs

+/
-

[
1 + C (π)

0 δMπ + C (π)
1 δ2

Mπ
+ C (K )δMK

]

·

[
1 + D0a2 + D1(amQ)2 + D2a4 + FM2

π

e−MπL

(MπL)3/2

]
, (5)

where δMP =
(
MP − Mphys

P

)
for P = π, K and A0, A1,C

(π)
0 ,C (π)

1 ,C (K ), D0, D1, D2, F are free
parameters. We estimate the main systematic effects by including/excluding different terms in the
fit function (5). The sea-quark chiral extrapolation turns out to be the dominant systematic error,
suggesting that a better control could be achieved by using RBC/UKQCD gauge ensembles close
to the physical pion mass.

Our results are shown in Fig. 1, where data points are corrected for the fitted lattice artifacts
indicated in square brackets in (5) and the fit band represents the predictions extrapolated to the
continuum and infinite volume limits and to the physical pion mass. We check a posteriori that our
determinations for the hyperfine mass splittings both in the bottom and in the charm energy regions
are consistent with the experimental measurements MB?s

− MBs and MD?
s
− MDs [17] (black and

yellow points of Fig. 1, respectively).
At the same time, we repeat the calculation of ∆HQs at a sequence of m0a values using now

the RHQ action in Eq. (1). For each ensemble and heavy-quark mass, we use, as a first step, some
educated guesses for the parameters cP and ζ .

Because the lattice action breaks Lorentz symmetry, mesons receive corrections to their energy-
momentum dispersion relation due to lattice artifacts

(aE)2 = (aM1)2 +

(
M1
M2

)
(a~p)2 + O([a~p]4) . (6)

The quantities M1 and M2 are known as the rest mass and kinetic mass, respectively,

M1 = E(~p = 0) , M2 = M1 × *
,

∂E2

∂p2
i

+
-

−1

~p=0
, (7)

and will generally be different for generic values of the parameters {m0a, cP, ζ }.
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Figure 1: Results for the hyperfine mass splitting ∆HQs = MH?
Qs
− MHQs of a heavy-strange meson HQs

versus 1/MHQS calculated for the DWF gauge ensembles of Tab. 1. For each ensemble a range of heavy-quark
masses is simulated. The data points displayed are corrected for the fitted lattice artifacts of Eq. (5). The solid
orange line represents our predictions for ∆HQs extrapolated to the continuum and infinite volume limits and
to the physical pion mass (i.e. by setting the Cs and Ds parameters of the fit ansatz (5) to 0) and the orange
area identifies the corresponding uncertainty at the level of one standard deviation. The black triangle and
the yellow square correspond to the experimental determinations for the hyperfine splittings ∆Bs and ∆Ds

[17], respectively. The vertical black and yellow lines help to visualize the bottom and charm energy regions.
Innermost error-bars correspond to the statistical error.

We require that the HQs meson rest and kinetic masses are equal

MHQs

1

MHQs

2

= 1 , (8)

so that the meson satisfies the continuum energy-momentum dispersion relation E2
HQs

(~p) = ~p2
HQs
+

M2
HQs

.
We determine the tuned values of the RHQ parameters non-perturbatively using an iterative

procedure similar to the one adopted in [5]. For a single step of the iteration procedure we compute
the quantities

{
MHQs, MH?

Qs
, EHQs (~p , 0)

}
for each value of m0a at five sets of parameters in

which we vary one of the two parameters {cP, ζ } by a chosen uncertainty ±σ {cP,ζ } while holding
the other one fixed:



m0a
cP
ζ


,



m0a
cP − σcP

ζ


,



m0a
cP + σcP

ζ


,



m0a
cP

ζ − σζ


,



m0a
cP

ζ + σζ


. (9)
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At fixed m0a value the heavy-strange meson masses in general will have a nonlinear dependence on
the RHQ parameters cP and ζ . However, thanks to the “box" of parameter space defined by the five
parameter sets, we are able to test ifwe areworking in a region sufficiently close to the true parameters
to assume a linear approximation between the observables and the parameters. If indeed we are in
the linear region, we then fit the five data sets for each quantity X =

{
MHQs, MH?

Qs
, EHQs (~p , 0)

}
using a simple linear function in cP and ζ , i.e.

X = aXcP + bXζ + cX . (10)

Quadratic terms are used to estimate systematic errors.
Finally, the tuned RHQ parameters {cP, ζ } for each value of m0a are obtained by solving the

following system of equations



∆HQs

M
HQs
1

M
HQs
2



tuned

= J ·


cP
ζ



RHQ

+ A , (11)

where J and A are a 2 × 2 matrix and a 2-element column vector, respectively, containing
combinations of the known linear coefficients and constants aX, bX and cX of Eq. (10) and[

MHQs

1 /MHQs

2

] tuned
= 1. In Eq. (11) ∆tunedHQs

is defined as

∆
tuned
HQs

=
A0

MHQs

+
A1

M2
HQs

(12)

with A0 and A1 given by the DW fit (5) and MHQs can be parameterized as in Eq. (10).
We consider the RHQ parameters {cP, ζ } to be tuned when both the values obtained via Eq. (11)

are within the “box" defined by the five parameter sets in Eq. (9). This condition ensures that we
are interpolating, rather than extrapolating, to the tuned point. If the result for any of the parameters
lies outside the box, we re-center the box around the result of Eq. (11) and perform another iteration
step. We repeat this procedure until {cP, ζ } tuned RHQ parameters lie inside the box for each m0a.

In Figs. 2 and 3we show universality plots with our results for the tunedRHQparameters {cP, ζ }
as a function of the bare heavy-quark mass m0a. We are able to predict tuned RHQ parameters in
a wide range of the heavy-quark mass by fitting our lattice data to the following function inspired
by perturbation theory

{cP, ζ } =
C0 + C1m0a
C2 + C3m0a


1 + G0

αs (1/a)
π

+ G1

(
αs (1/a)

π

)2

[
1 + Da2

]
(13)

where C0,C1,C2,C3,G0,G1, D are free parameters and the terms in square brackets parameterize
the dependence of {cP, ζ } on the QCD coupling constant. A possible dependence of {cP, ζ } on
light-quark masses is expected to be weak and is therefore neglected in the present study. Further
refinements of the fit function (13) are postponed to future work.

In Figs. 2 and 3 the fit bands correspond to (13) with {G0,G1, D} = 0 and the data points
are corrected for the αs and a2 dependences. Our non-perturbative predictions for {cP, ζ } are in
agreement both with previously published results and with lattice perturbation theory estimates [5].
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Figure 2: Results for the tuned RHQ parameter cP as a function of the bare heavy-quark mass m0a. Data
points are corrected for the αs and a2 dependences included in the fit function (13). The orange band is the
one sigma fit result with {G0,G1, D} = 0. Black triangles represent previously published results for non-
perturbative determinations of cP [5], while red circles to the lattice perturbation theory estimates computed
in Ref. [5]. Inner error-bars correspond to statistical errors and outer error-bars to statistical and systematic
uncertainties added in quadrature.
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Figure 3: The same of Fig. 2 for the tuned RHQ parameter ζ .
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Finally, as proposed in Ref. [5], m0a can be fixed by matching to the experimental values of the
spin-averaged heavy-strange meson masses, MHQs =

(
MHQs + 3MH?

Qs

)
/4. We compute MHQs at

three sets of parameters in which we vary m0a by a chosen uncertainty and the other two parameters
{cP, ζ } are set at the values interpolated by (13). The iterative procedure is repeated as described
above.

5. Applications to bottom spectroscopy

Once the RHQ parameters have been tuned, we can use them to predict physical on-shell
quantities for heavy-light and heavy-heavy meson states. We compute the desired quantities on the
same sets of parameters used for the final iteration of the tuning procedure. We then propagate the
statistical errors in the tuned RHQ parameters to these quantities using the jackknife method; this
accounts for correlations between the RHQ parameters.

In Figs. 4 and 5 we show our preliminary determinations for the hyperfine mass splittings of the
Bs and Bc systems on a subset of O(20) gauge configurations for the 24I, 32I and 32Ifine ensembles
listed in Tab. 1. Results are already extrapolated to the physical light-quark masses (we do not
observe a statistically significant dependence of the observables on the light sea-quark masses).
Then, a linear extrapolation in a2 leads to the following continuum limit results

MB?s
− MBs = 54 (11)stat (3)syst [11] MeV (14)

MB?c
− MBc = 50 (9)stat (2)syst [9] MeV , (15)

where ()syst represents the total systematic uncertainty with the various sources (discretization
errors and continuum extrapolation, scale setting error, finite-volume effects, chiral extrapolation
and systematic effects in the tuned RHQ parameters) added in quadrature.

Our preliminary lattice result (14) turns out to be consistent – within our larger uncertainty –
with the experimental determination ∆expBs

= 49 (2) MeV [17]. On the other hand an experimental
measurements of the hyperfine mass splitting for the Bc system is still lacking. Thus, lattice QCD
predictions provide new input which could be helpful for both experiments and phenomenological
studies. Our determination is in good agreement with the more precise lattice result ∆Bs =

54 (3) MeV of Ref. [18]. The improvement of the statistical uncertainties of (14)-(15) is in
progress.
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