PoS - Proceedings of Science
Volume 396 - The 38th International Symposium on Lattice Field Theory (LATTICE2021) - Poster
Hybrid stochastic method for the tensor renormalization group
H. Ohki*, M. Tomii and E. Arai
Full text: pdf
Pre-published on: May 16, 2022
Published on:
Abstract
We propose a hybrid stochastic method for the tensor renormalization group (TRG) approach.
TRG is known as a powerful tool to study the many-body systems and quantum field theory on the lattice.
It is based on a low-rank approximation of the tensor using the truncated singular value decomposition (SVD),
whose computational cost increases as the bond dimension increases,
so that efficient cost reduction techniques are highly demanded.
We use noise vectors for the low-rank approximation with the truncated SVD,
by which the truncation error is replaced with a statistical error due to noise,
and an error estimation could be improved.
We test this method in the classical Ising model and observe a better accuracy than TRG.
We also discuss a cross contamination issue in a multiple use of the same noise vectors,
and to remove this systematic error we consider position-dependent noise vectors.
DOI: https://doi.org/10.22323/1.396.0051
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.