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1. Introduction

Recent improvements in lattice QCD calculations have been achieved by making use of the
eigenvalue spectrum of lattice operators, such as the lattice Dirac operator and the lattice Laplacian
operator. The Lanczos iteration method is an eigensolver algorithm employed for that purpose [1].
It enables calculation of both eigenvalues and eigenvectors of a Hermitian matrix. It is most useful
when a partial eigenvalue spectrum is required. Additional iterations provide more eigenmodes
with higher accuracy.

There are several improvement methods for the Lanczos algorithm: (1) Polynomial acceleration
applies a polynomial to the matrix of interest so that the Lanczos iteration converges faster with
a transformed eigenvalue spectrum. Chebyshev polynomials are a popular choice [2]. (2) There
are two kinds of restarted Lanczos algorithms that take advantage of information learned from the
previous run. The Implicitly Restarted Lanczos (IRL) algorithm suppresses unwanted eigenvalues
at the restart [3]. Alternatively, the Thick-Restart Lanczos (TRL) algorithm suppresses or explicitly
deflates converged wanted eigenvalues [4]. (3) There are approaches that utilize blocking to improve
the computational efficiency of the Lanczos algorithm. The Block Lanczos (BL) algorithm can
enhance the compute-to-communication ratio with the Split Grid method [5].

Grid [6, 7] and QUDA [8–10] are very popular and highly performing lattice QCD libraries,
especially for modern parallel computing systems. For the Lanczos eigensolver, Grid has IRL and
BL eigensolvers. QUDA has a TRL eigensolver and its block variant. All of them utilize Chebyshev
polynomials to enhance the convergence.

We investigate these Lanczos eigensolver algorithms in the Grid and the QUDA libraries
measuring and analyzing their performance for the Highly Improved Staggered Quark (HISQ)
Dirac operator. In Section 2, we describe our simulation details. In Section 3, we describe
some basics of the Lanczos iteration method. Section 4 describes the general strategy of utilizing
Chebyshev polynomials and studies its optimization. In Sections 5 and 6, we illustrate ideas of IRL
and TRL, respectively, and discuss their optimizations. In Section 7, we examine the performance
of BL with the Split-Grid method. We conclude in Section 8.

2. Simulation details

We calculate eigenvalues and eigenvectors of the low modes of the massless HISQ Dirac opera-
tor 𝐷. The Lanczos eigensolvers are run using a Hermitian variation 𝐷†𝐷, which is (semi)-positive
definite that allows even-odd splitting. The eigensolver performance is measured in elapsed time
taken by the eigensolver routine itself. We use an 𝑁 𝑓 = 2 + 1 + 1 MILC HISQ gauge configuration,
with lattice size 243 × 64, lattice spacing 𝑎 ≈ 0.12 fm, and 𝑎𝑚𝑙/𝑎𝑚𝑠 = 0.00507/0.0507 [11].

We run Grid on Intel CPUs and QUDA on NVIDIA GPUs, where they perform their best so
that we can focus on algorithmic performance. All Grid runs are done on a single node of dual Intel
Xeon E5-2650v2 system that has 2× 8 = 16 CPU cores, where we use only half, i.e., eight, of them
for performance stability. We apply OpenMP for their parallelization, except for the BL eigensolver
in Section 7, where we apply MPI. QUDA runs are done on the same system but with two NVIDIA
K80 GPUs.
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3. Lanczos algorithm and Lanczos iteration method

Let us consider an 𝑚 × 𝑚 Hermitian matrix 𝐴, and an 𝑚-dimensional vector 𝑏. The Gram-
Schmidt process on a set of vectors {𝑏, 𝐴𝑏, 𝐴2𝑏, · · · , 𝐴𝑛−1𝑏} for 𝑛 ≤ 𝑚, which spans a Krylov
subspace K𝑛 (𝐴, 𝑏), gives a three term recurrence relation

𝑡𝑖+1,𝑖 𝑞𝑖+1 = 𝐴𝑞𝑖 − 𝑡𝑖,𝑖 𝑞𝑖 − 𝑡𝑖−1,𝑖 𝑞𝑖−1 , (1)

where 𝑞𝑖 are orthonormal basis vectors of K𝑛 (𝐴, 𝑏), and 𝑡𝑖 𝑗 =
〈
𝑞𝑖
�� 𝐴𝑞 𝑗

〉
. Combining recurrences

of 𝑖 = 1, · · · , 𝑛, we have
𝑇𝑛 = 𝑄†

𝑛𝐴𝑄𝑛 , (2)

where 𝑄𝑛 = (𝑞1 |𝑞2 | · · · |𝑞𝑛), and 𝑇𝑛 = (𝑡𝑖 𝑗) is an 𝑛 × 𝑛 Hermitian tridiagonal matrix.
The Lanczos algorithm is to construct 𝑇𝑛 and 𝑄𝑛 by iterating the Lanczos recurrence relation

Eq. (1) [1]. When 𝑛 = 𝑚, 𝑄𝑚 is a unitary transformation, so 𝑇𝑚 has the same eigenvalue spectrum
as 𝐴. Even for 𝑛 < 𝑚, eigenvalues of 𝑇𝑛 are approximate to some 𝑛 eigenvalues of 𝐴 [12]. They
converge to true eigenvalues of 𝐴 as 𝑛 increases. The largest, the smallest, or the most isolated
(the least dense) extreme eigenvalues appear first and converge first. When 𝑘 (< 𝑚) eigenvalues
are wanted, we need to perform 𝑛 (𝑘 ≤ 𝑛 ≤ 𝑚) iterations of the Lanczos recurrence (Eq. (1)) with
the result that 𝑇𝑛 has eigenvalues approximate to 𝑘 eigenvalues of 𝐴 of interest within the target
precision.

A QR iteration is usually employed to diagonalize a tridiagonal matrix 𝑇𝑛 [13, 14]. Then its
eigenvalue decomposition gives 𝑇𝑛 = 𝑉𝑛Λ𝑉

†
𝑛 , where Λ is a diagonal matrix with eigenvalues _𝑖 of

𝑇𝑛, and 𝑉𝑛 is composed of their corresponding eigenvectors 𝑣𝑖 . With this, we calculate eigenvector
estimates (called Ritz vectors) 𝑤𝑖 and eigenvalue estimates (called Ritz values) _̃𝑖 by

𝑤𝑖 = 𝑄𝑛𝑣𝑖 , _̃𝑖 =
〈𝑤𝑖 |𝐴|𝑤𝑖〉
〈𝑤𝑖 |𝑤𝑖〉

. (3)

The convergence of each eigenvector is measured by a residual𝐴|𝑤𝑖〉 − _̃𝑖 |𝑤𝑖〉
√︁

〈𝑤𝑖 |𝑤𝑖〉
, (4)

or dividing it by some normalization factors. Note that _̃𝑖 can be different from _𝑖 since we usually
apply a polynomial to 𝐴, as will be discussed in Section 4.

4. Chebyshev acceleration

The convergence of a Lanczos iteration depends on the eigenvalue density. Less dense (includ-
ing the largest and the smallest) eigenvalues appear early and converge fast. One can control the
density of eigenvalues, and, thus, the convergence of Lanczos iteration, by applying a polynomial
P to the matrix 𝐴. It maps eigenvalues _𝑖 of 𝐴 into P(_𝑖) but preserves their eigenvectors.

Chebyshev polynomials 𝐶𝑝 (𝑥) of degree 𝑝 are bounded within [−1, 1] for |𝑥 | ≤ 1, while
diverging rapidly for a high 𝑝 as |𝑥 | increases for |𝑥 | > 1 [15]. We can transform it to map
unwanted eigenvalues into the bounded region and wanted eigenvalues into the diverging region.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
5
3

Performance of several Lanczos eigensolvers with HISQ fermions Hwancheol Jeong

(0.05, 25)
(0.1, 25)

(0.05, 30)

Chebyshev poly. ( , )

0

250

500

750

1000
812

606
784

Converged eigenvalues

(a)

30 50 100 150 200
Chebyshev polynomial degree p

0
200
400
600
800

1000

0 

420 

812 
898 918 

Converged eigenvalues

0

2500

5000

7500

10000

12500

  3178   3961
  6180

  8345
  10508

Elapsed time(s)

(b)

Figure 1: The convergence of Chebyshev accelerated Lanczos iterations for different Chebyshev parameters
(𝛼, 𝛽) (left) and degree 𝑝 (right).

This Chebyshev acceleration can boost the convergence of Lanczos iteration. With suitable choices
of the location of the bounded region and the polynomial degree, its benefit more than compensates
for the cost of applying the polynomial.

Eigenvalues of 𝐷†𝐷 are non-negative, and our usual interests lie in its low modes. We transform
the domain of 𝐶𝑝 (𝑥) so that [−1, 1] becomes [𝛼, 𝛽] that covers the unwanted eigenvalues. The
value of 𝛼 should be set to be greater than the largest desired eigenvalue, and 𝛽 to be greater than
the largest eigenvalue in the whole spectrum. A few power iterations can help to estimate the size
of the largest eigenvalue. Choosing 𝛼 needs some heuristics, but we may use the same value within
a gauge ensemble.

In Fig. 1, we show the convergence of Lanczos iterations with different Chebyshev acceleration
parameters. Here, Grid’s ImplictlyRestartedLanczos eigensolver is used with a little modifi-
cation not to restart. We run 1000 Lanczos iterations, and the convergences are checked by Eq. (4)
in double precision. Figure 1a presents the number of converged eigenvalues for different 𝛼 and 𝛽

values. The same Chebyshev polynomial degree 𝑝 = 100 is used here, which means all the runs take
the same time in principle. On this gauge configuration, the largest eigenvalue of 𝐷†𝐷 is around
21, and the 1000th eigenvalue is around 0.046. The result indicates that we get the best convergence
when both 𝛼 and 𝛽 are the closest to the 1000th eigenvalue and the largest eigenvalue, respectively.
The 800th eigenvalue is around 0.034. Hence, 𝛼 = 0.04 might give a better convergence on this
gauge configuration. However, a tight choice may not work for other gauge configurations in the
same ensemble.

In Fig. 1b, we present the results for different polynomial degrees 𝑝. Here, we used (𝛼, 𝛽) =
(0.05, 25), the best pair found in Fig. 1a. Although higher 𝑝 makes more eigenvalues converge, it
demands more computations. In this example, 𝑝 = 100 gives the best efficiency. In general, the
most efficient 𝑝 depends on the number of eigenvalues we want. We need heuristics to find an
optimized 𝑝.

Every improved Lanczos algorithm discussed in this paper utilizes Chebyshev acceleration.
We use (𝛼, 𝛽) = (0.05, 25), and 𝑝 = 50 or 100.
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5. Implicitly Restarted Lanczos

A basic Lanczos algorithm must carry on its iteration by increasing the Krylov subspace
dimension 𝑛 until eigenvalues of the desired number converge. As 𝑛 increases, it takes more
memory to store the eigenvectors as well as more computing time for the iteration1 and for the
diagonalization of a larger 𝑇𝑛. Moreover, it is difficult to anticipate an optimized (or the smallest)
𝑛 without monitoring the convergence, which includes diagonalizing 𝑇𝑖 (𝑖 < 𝑛) and computing
eigenvectors and their residuals.

Suppose we have performed 𝑛 Lanczos iterations for Hermitian matrix 𝐴(= 𝐶𝑝 (𝐷†𝐷)) with a
starting vector 𝑏. The Implicitly Restarted Lanczos (IRL) algorithm allows us to restart from the
(𝑛− 𝑘)-th step of the Lanczos algorithm for 𝐴 with a new starting vector �̃� = (𝐴−`𝑘) · · · (𝐴−`1)𝑏,
where the {`𝑖 , 𝑖 = 1, . . . 𝑘} are some eigenvalues [3]. The Krylov subspaceK𝑛 (𝐴, �̃�) for the restarted
run does not contain eigenvectors corresponding to the eigenvalues `𝑖 . It not only excludes unwanted
eigenvalues and eigenvalues near them, but it also improves the convergence of the remaining wanted
eigenvalues far from the {`𝑖}.

When we are interested in only the 𝑡 lowest eigenmodes, a typical implementation of IRL runs
the Lanczos iteration to the 𝑛-th step, does the implicit restart that excludes the 𝑘 largest eigenvalues
found in the previous run, and repeats them until the 𝑡 smallest eigenvalues converge. In this way,
we can constrain the Krylov subspace dimension to any 𝑛 > 𝑡, as much as the system memory
allows. However, since 𝑘 is usually set to make 𝑛 − 𝑘 slightly larger than 𝑡, 𝑛 determines how many
restarts we need to do. Each restart must perform the QR decomposition 𝑘 times and do the basis
rotations using them. This cost can be comparable to that of many Lanczos iterations. Hence, we
need to find an optimized 𝑛 that maximizes the restarting efficiency.

The Grid library has an IRL eigensolver named ImplicitlyRestartedLanczos. In Fig. 2,
we present its performance profiles for various Krylov subspace dimensions 𝑛 with Chebyshev
acceleration of 𝑝 = 50, 100. For non-restarted cases, a modified version mentioned in Section 4 is
used. Note that in the Lanczos iteration, eigenvalues converge simultaneously, not one by one in
order. Hence, it could be less efficient for calculating a small number of eigenvalues. In Fig. 2a,
where we calculate 100 eigenvalues, the non-restarted Lanczos converges at 𝑛 = 400 and 𝑛 = 700
for 𝑝 = 50 and 𝑝 = 100, respectively. In a (relatively) slowly converging case like this, IRL can
perform better than the basic non-restarted Lanczos. For both 𝑝 = 50 and 100, we obtain the best
performance by restarting once.

On the other hand, in Fig. 2b, where we calculate 500 eigenvalues, the non-restarted Lanczos
takes the least time. Here, 𝑛 = 800, 1050 are only about twice 500, so the restarting costs for
𝑛 = 600, 700, 800 are comparable to or more expensive than running Lanczos on a bigger Krylov
subspace. However, the differences between 𝑛 = 700, 800, 1050 are not huge for 𝑝 = 50, so one
may choose 𝑛 = 700 to save memory. In addition, unlike the non-restarted Lanczos where the
convergence is not guaranteed for a given 𝑛, IRL assures its convergence when the same 𝑛 is used
for other gauge configurations, even though it may need more restarts.

1In practice, Lanczos vectors 𝑞𝑖’s orthogonality gets inexact as iteration continues due to the accumulation of
numerical errors. One can correct it by re-orthogonalizing all 𝑞𝑖’s per some period of iterations. This is expensive for a
large 𝑛.
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Figure 2: Performance of the Grid IRL eigensolver for various Krylov subspace dimensions 𝑛with Chebyshev
polynomial degrees 𝑝 = 50, 100.

One last remark is that we should optimize the Chebyshev acceleration parameters together
with 𝑛. In Fig. 2a, the non-restarted Lanczos converges faster with 𝑝 = 100 than 𝑝 = 50, while the
IRL’s best performance comes with 𝑝 = 50.

6. Thick-Restart Lanczos

In this section, we investigate another restarted Lanczos algorithm called Thick-Restart Lanczos
(TRL) [4]. Unlike IRL, which suppresses unwanted eigenvectors to improve convergence, TRL
suppresses (nearly) converged wanted eigenvectors from the Krylov subspace for the restarted run.

One can rewrite Eq. (2) as

Λ𝑘 = (𝑄𝑛𝑉𝑘)†𝐴𝑄𝑛𝑉𝑘 = 𝑊𝑘
†𝐴𝑊𝑘 , (5)

where 𝑉𝑘 is composed of some 𝑘 (< 𝑛) eigenvectors of 𝑇𝑛, and 𝑊𝑘 ≡ (𝑤1 |𝑤2 | · · · |𝑤𝑘) is composed
of the corresponding 𝑘 eigenvector estimates (Ritz vectors) of 𝐴. Λ𝑘 is a diagonal matrix of 𝑘

eigenvalues of 𝑇𝑛 that are eigenvalue estimates (Ritz values) of 𝐴. Note that 𝑤𝑖’s are basis vectors
of the same Krylov subspace K𝑛 (𝐴, 𝑏). Hence, we can replace 𝑄𝑛 with 𝑊𝑘 , and 𝑇𝑛 with Λ𝑘 in
Eq. (2).

The TRL algorithm restarts the Lanczos iteration upon𝑊𝑘 and Λ𝑘 , but by appending the vector
𝑞𝑛+1.2 One problem is that 𝑤𝑖’s are not orthogonal to 𝑞𝑛+1, so 〈𝐴𝑞𝑛+1 |𝑤𝑖〉 terms survive in the

2One cannot start the Lanczos algorithm with an eigenvector, because it generates a rank-1 Krylov subspace.
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Figure 3: Performance of the QUDA TRL eigensolver for various Krylov subspace dimensions 𝑛 with
Chebyshev polynomial degrees 𝑝 = 50, 100.

Gram-Schmidt process generating 𝑞𝑛+2. This results in a arrow-like matrix 𝑇𝑛+1. However, thanks
to the symmetry of 𝐴, the generation of 𝑞𝑛+2+𝑖 (𝑖 ≥ 1) returns to the normal three-term Lanczos
recurrence. Hence, we need to deal only with diagonalizing the arrow-like matrix, which can be
done in several ways including the general matrix diagonalization.

Now that 𝑞𝑛+2 is orthogonal to 𝑤1, · · · , 𝑤𝑘 , approximate eigenvectors of 𝐴, the restarted run
searches on the Krylov subspace orthogonal to them. It focuses on finding other eigenvectors rather
than 𝑤𝑖’s, though it still slowly improves 𝑤𝑖’s convergences as well. With a proper choice of 𝑘 , it
can balance the convergence of eigenvalues efficiently.

The QUDA library has a TRL eigensolver named TRLM. This eigensolver determines 𝑘 as the
number of converged eigenvalues in the desired precision plus the half of the remaining eigenvalues
that are still converging. It also implements the locking method, which explicitly deflates some
converged eigenvectors from the restarted run. TRLM locks eigenvectors converged to the machine
precision. It reduces memory usage and computing cost.

In Fig. 3, we present QUDA TRLM’s performance for various Krylov subspace dimensions 𝑛

with Chebyshev acceleration of 𝑝 = 50, 100. In both Fig. 3a and Fig. 3b, we find TRL can perform
better than the non-restarted Lanczos with optimization. One benefit of TRL, compared with IRL,
is that its restarting cost can be absorbed into the Ritz vector calculation. That might be why TRL
takes the least time for 𝑛 = 600 with six restarts in Fig. 3b.

Restarted Lanczos algorithms (both TRL and IRL) allow us to use less memory. It is especially
useful for GPU systems, where memory is usually lacking. Figure 3b does not include the non-
restarted Lanczos result for 𝑝 = 50 because it does not converge within the given GPU memory
size.
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Figure 4: Performance of the Grid BL eigensolver with the Split Grid method (SG), compared with unblocked
basic Lanczos and BL without the Split Grid method.

7. Block Lanczos with Split Grid

The Block Lanczos (BL) algorithm runs the Lanczos iteration with multiple (𝑢) starting vectors
{𝑏1, 𝑏2, · · · , 𝑏𝑢}, where 𝑏𝑖’s are orthogonal to each other [5]. At each 𝑗-th iteration of BL, a block
version of the Lanczos recurrence Eq. (1) constructs 𝑢 basis vectors 𝑞1

𝑗
, · · · , 𝑞𝑢

𝑗
of the combined

Krylov subspaceK𝑛 (𝐴, 𝑏1)∪· · ·∪K𝑛 (𝐴, 𝑏𝑢) by orthogonalizing 𝐴𝑞1
𝑗−1, · · · , 𝐴𝑞

𝑢
𝑗−1 simultaneously.

After 𝑛 iterations, it transforms 𝐴 into a block-tridiagonal matrix 𝑇𝑛 of dimension (𝑛𝑢 × 𝑛𝑢).
The convergence of a BL iteration is usually slower than that of the basic Lanczos for the same

subspace dimension �̃� = 𝑛𝑢, because the Krylov subspace dimension 𝑛 per starting vector 𝑏𝑖 is
smaller than �̃�. However, on a parallel computing system, BL may outperform the basic Lanczos
by parallelizing the multiplications 𝐴𝑞𝑖

𝑗−1 for 𝑖 = 1, · · · , 𝑢. The Split Grid method is one way of
doing it [5]. It splits a communication grid such as MPI and distributes parallel jobs into the split
grids, so that each job runs with a lower surface-to-volume ratio.

The Grid library has a BL eigensolver implementing the Split Grid method, named Implic-
itlyRestartedBlockLanczos.3 In Fig. 4, we compare its performance with the unblocked basic
Lanczos and BL without the Split Grid method. The block size for BL is set to 𝑢 = 8. In this
measurement, we run 8 MPI processes connected by an intra-node network. We calculate 500
eigenvalues, for which the unblocked Lanczos converges at �̃� = 800, while the BL converges at
�̃� = 904. Hence, without the Split-Grid method, the BL algorithm itself is slower than the basic
Lanczos algorithm, as the results show.

However, the Split Grid method can enhance the BL’s performance. In Fig. 4, BL’s performance
is improved by 12% with the Split Grid method, even on the intra-node network. Although it is
still a little slower than the unblocked Lanczos, its advantage could become significant on a slow
inter-node network.4

8. Conclusion

We have discussed improved Lanczos algorithms and their optimizations. A well-tuned Cheby-
shev polynomial improves the Lanczos iteration’s convergence significantly. All other improved

3Although it provides both non-restarted and implicitly restarted versions of BL, the latter is not pursued.
4It is under investigation. A preliminary result shows that with 8 MPI inter-nodes, BL with Split Grid gives around

200% better performance than the unblocked Lanczos.
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Lanczos algorithms utilize it. Restarted Lanczos algorithms, such as Implicitly Restarted Lanczos
and Thick-Restart Lanczos, do not always perform better than the non-restarted Lanczos algorithm.
Still, we can optimize them to perform better than or comparable to non-restarted Lanczos. It
is advantageous for small memory systems such as GPUs. The performance of Block Lanczos
utilizing the Split Grid method is comparable to that of the unblocked Lanczos on an intra-node
network. It may perform better on inter-node networks.

Acknowledgments

We would like to thank D. Howarth, Y. Jang, and C. Jung for useful discussions. This research
was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration. We also
gratefully acknowledge support from the Department of Energy grant DE-SC0010120 and from the
National Science Foundation grant PHY20-13064. Finally, we thank the developers who support
Grid and QUDA whose names can be found at the respective websites for the software.

References

[1] C. Lanczos, J. Res. Natl. Bur. Stand. B Math. Sci. 45 (1950) 255.

[2] Y. Saad, Math. Comp. 42 (1984) 567.

[3] D.C. Sorensen, vol. 4 of ICASE/LaRC Interdiscip. Ser. Sci. Eng., pp. 119–165, Kluwer
Acad. Publ., Dordrecht (1997), DOI.

[4] K. Wu and H. Simon, SIAM J. Matrix Anal. Appl. 22 (2000) 602.

[5] Y.-C. Jang and C. Jung, PoS LATTICE2018 (2019) 309.

[6] P.A. Boyle, G. Cossu, A. Yamaguchi and A. Portelli, PoS LATTICE2015 (2016) 023.

[7] https://github.com/paboyle/Grid.

[8] M.A. Clark, R. Babich, K. Barros, R.C. Brower and C. Rebbi, Comput. Phys. Commun. 181
(2010) 1517 [0911.3191].

[9] R. Babich, M.A. Clark, B. Joo, G. Shi, R.C. Brower and S. Gottlieb, 9, 2011, DOI
[1109.2935].

[10] https://github.com/lattice/quda.

[11] MILC collaboration, Phys. Rev. D 87 (2013) 054505 [1212.4768].

[12] L.N. Trefethen and I. David Bau, Numerical Liniear Algebra (1997).

[13] J.H. Wilkinson, Linear Algebra and Appl. 1 (1968) 409.

[14] T.-L. Wang and W.B. Gragg, Math. Comp. 71 (2002) 1473.

[15] Wikipedia contributors, https://en.wikipedia.org/w/index.php?title=
Chebyshev_polynomials&oldid=999634704, 2021.

9

https://doi.org/10.6028/jres.045.026
https://doi.org/10.1007/978-94-011-5412-3_5
https://doi.org/10.1137/S0895479898334605
https://doi.org/10.22323/1.334.0309
https://doi.org/10.22323/1.251.0023
https://github.com/paboyle/Grid
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1016/j.cpc.2010.05.002
https://arxiv.org/abs/0911.3191
https://doi.org/10.1145/2063384.2063478
https://arxiv.org/abs/1109.2935
https://github.com/lattice/quda
https://doi.org/10.1103/PhysRevD.87.054505
https://arxiv.org/abs/1212.4768
https://doi.org/10.1090/S0025-5718-01-01387-4
https://en.wikipedia.org/w/index.php?title=Chebyshev_polynomials&oldid=999634704
https://en.wikipedia.org/w/index.php?title=Chebyshev_polynomials&oldid=999634704

	Introduction
	Simulation details
	Lanczos algorithm and Lanczos iteration method
	Chebyshev acceleration
	Implicitly Restarted Lanczos
	Thick-Restart Lanczos
	Block Lanczos with Split Grid
	Conclusion

