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We report on a two-flavour lattice QCD determination of the 𝐵𝑠 → 𝐷𝑠 and 𝐵𝑠 → 𝐷∗
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which in the heavy quark limit can be parameterised by the form factors G, and ℎA1 , ℎA2 and ℎA3 .
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lattice QCD. In particular, we present numerical results for G and ℎA1 .
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1. Motivation and preliminary remarks

The purpose of this work is to study whether Wilson-Clover fermions, in combination with the
step-scaling in mass method [1, 2], allow for the extraction of reliable results for 𝐵 decays, as far
as cut-off effects and contamination by excited states are concerned. We perform an analysis on
𝑁 𝑓 = 2 ensembles, created by the CLS effort. The work presented here is described in more detail
in the corresponding article [3].

We consider the semi leptonic decay 𝐵𝑠 to 𝐷
(∗)
𝑠 , as sketched in fig. 1.

Figure 1: Schematic of the decay 𝐵0
𝑠 → 𝐷

+(∗)
𝑠 ℓ− 𝜈̄ℓ

The decay width includes the CKM matrix element 𝑉𝑐𝑏 as well as a form factor that encodes the
long-distance dynamics of QCD. Our main focus is on 𝐵𝑠 → 𝐷𝑠, where this factor is called G.

𝑑Γ𝐵𝑠→𝐷𝑠

𝑑𝑤
∝ |𝑉𝑐𝑏 |2 · |G(𝑤) |2 · 𝐺2

𝐹 (𝑚𝐵𝑠
+ 𝑚𝐷𝑠

)2, (1)

where 𝑤 =
𝐸𝐷𝑠

𝑚𝐷𝑠
is the relative velocity of the 𝐷𝑠

(∗) meson. It is ℎA1 for 𝐵𝑠 → 𝐷𝑠
∗.

The strong contribution only depends on 𝑤. It is suitable to describe physics of heavy-light
mesons by means of Heavy Quark Effective Theory (HQET). In first approximation, the light
degrees of freedom live in the potential created by a static source of colour. We are interested in
the zero recoil case, where 𝑤 = 1. In the heavy quark limit, Heavy Quark Symmetry implies that
G𝑚ℎ→∞(1) = 1. Since 𝑏 and 𝑐 are heavy, we can predict ab initio that G(1) is close to one.

The decay can be parametrised as

⟨𝐷𝑠 (𝑘) |𝑏̄𝛾𝜇𝑐 |𝐵𝑠 (𝑝)⟩ = 𝐴𝜇 (𝑝, 𝑘)G(𝑤) + 𝐵𝜇 (𝑝, 𝑘) 𝑓0(𝑤), (2)

where all dependencies other than the momentum transfer have been absorbed. The left hand side
is a matrix element, which can be accessed on the lattice [2].
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Figure 2: Ratios 𝜎 at the different mass step-scaling steps.

2. Mass step-scaling

To control cut-off effects we have decided not to compute our observables directly at the b-quark
scale. Instead, on each ensemble, a set of six meson masses 𝑚ℎ𝑖∈[0,..,5]𝑠 is chosen to fulfill,

𝑚ℎ0𝑠 = 𝑚𝐷𝑠
, (3)

𝑚ℎ𝑖+1𝑠

𝑚ℎ𝑖𝑠

= 𝜆 with 𝜆 = 6

√︂
𝑚𝐵𝑠

𝑚𝐷𝑠

. (4)

The bare heavy quark mass is tuned to ensure these relations.

This approach has more advantages than just allowing us to extrapolate our results to the 𝐵𝑠

mass. As mentioned in the previous section, G(𝑤 = 1) equals one at the elastic point 𝑚ℎ0𝑠 = 𝑚𝐷𝑠
.

We exploit this, by expressing G𝐵𝑠→𝐷𝑠 (𝑤 = 1) as:

G𝐵𝑠→𝐷𝑠 (𝑤 = 1) = G𝑖=6(1) =
G6(1)
G5(1)

· G5(1)
G4(1)

· ... · G1(1)
G0(1)

· G0(1) (5)

= 𝜎6 · 𝜎5 · ... · 𝜎1 with 𝜎𝑖 =
G𝑖 (1)
G𝑖−1(1)

(6)

We only need to consider the ratios of G’s, which leads to the cancellation of correlated errors and
renormalization constants. But since we do not compute G6, we do not get a value for 𝜎6 either.
This means that we have to perform some extrapolation to gain access to it. In Fig. 2 we show that
our ratios are compatible with a constant. Therefore, for our final results in section 5, we opted for
computing our final result from the mean value 𝜎̄ as G𝐵𝑠→𝐷𝑠 (𝑤 = 1) = 𝜎6.

For the computation of ℎ𝐴1 we can gain no such advantage, since ℎ𝐴1
𝐷𝑠

∗→𝐷𝑠 ≠ 1. Nevertheless,
we use the same approach for consistency.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
5
6

𝐵𝑠 → 𝐷
(∗)
𝑠 form factors from lattice QCD with 𝑁 𝑓 = 2 Wilson-clover quarks Jan Neuendorf

3. Matrix elements

Looking at the left hand side of eq. (2), we can see the form ⟨𝑃 |𝑉 |𝑃⟩. On the lattice, we
compute a corresponding three-point correlation function:

𝐶 𝜃
𝑖 𝑗 ( 𝑇2 ], 𝑡) =

∑︁
®𝑥, ®𝑦

⟨𝑃ℎ𝑠, 𝑖 ( 𝑇2 )𝑉
𝐼, 𝜃

ℎ𝑐, 𝜇
(𝑡)𝑃† 𝜃

𝑐𝑠, 𝑗
(0)⟩

1≪𝑡≪𝑇
2∼

𝑍𝐻𝑠
𝑍𝐷𝑠

4𝐸𝐻𝑠
𝐸𝐷𝑠

𝑒−𝐸𝐻𝑠 𝑡𝑒−𝐸𝐷𝑠 ( 𝑇2 −𝑡) ⟨𝐷𝑠 (𝑘) |𝑏̄𝛾𝜇𝑐 |𝐻𝑠 (𝑝)⟩ , (7)

where 𝑍 is the source amplitude. The bare matrix element at the left hand side of eq. (2) appears.
The source-sink-separation is kept constant at 𝑇

2 , which is ≳ 2 fm for the studied ensembles.
Using the two point correlators belonging to the propagation of 𝐻𝑠 and 𝐷𝑠

(∗) , we can extract
the energies and amplitudes and eliminate them from eq. (7).

To optimise for a better overlap with the respective ground states of 𝐷𝑠
(∗) and 𝐻𝑠, we made

use of multiple smeared sources and sinks and the generalised eigenvalue problem (GEVP). The
(ground state) eigenvectors were computed for the two point correlators. They could then also be
used to project the three-point correlator (eq. (7)), since the setup of the sources is consistent.

4. Lattice details

Our data were computed on eight different CLS ensembles with 𝑁 𝑓 = 2 and 𝑂 (𝑎) improved
Wilson-Clover fermions [4, 5].
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Figure 3: Parameters of the used CLS ensembles.

The parameters of these ensembles are shown in Fig. 3. Hopping-parameters corresponding to 𝑐-
and 𝑠-quarks, as well as the appropriately tuned values for the mass step-scaling steps are known
from previous works [6, 7].

We are interested in the case of zero recoil (𝑤 = 1). The kinematic vanishing of the spatial
matrix element ⟨𝐷𝑠 |𝑉 𝑖 |𝐵𝑠⟩ makes it impossible to extract G at 𝑤 = 1 directly. For ℎ𝐴1 we do
not have this problem. We need to calculate G with different momentum transfers and extrapolate
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Figure 4: (left) Dispersion relation for 𝐷𝑠 with twisted boundary conditions. (right) Exemplary extrapolation
of G to 𝑤 = 1.
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Figure 5: Visualisation of the combined fit eq. (8) and extrapolation to the physical point for Gelastic.

to zero recoil. To introduce momenta to the 𝐷𝑠, we impose spatial isotropic twisted-boundary
conditions with a twisting angle 𝜃 to the 𝑐-quark. On each ensemble we compute the correlators for
six values of 𝜃 as well as without twisting. In Fig. 4 we see that the introduction of a spatial twisting-
angle for the 𝑐-quark does indeed inject the 𝐵𝑠 with the expected momentum. Here 𝑤 =

𝐸𝐷𝑠

𝑚𝐷𝑠
is

computed directly from the spectroscopy of the two point correlation functions. We obtain G for
all values of 𝜃 and perform a linear extrapolation in (𝑤 − 1). An example for this is shown in Fig. 4.

5. Results at the physical point

For all observables 𝑜, which need to be extrapolated in this section, we use the following ansatz:

𝑜(𝑎, 𝑚2
𝜋) = 𝑜0 + 𝑜1 × (𝑚2

𝜋/𝑚
2,physical
𝜋 ) + 𝑜2 × (𝑎/𝑎𝛽=5.3)2 (8)

=⇒ 𝑜physical = 𝑜(0, 𝑚2,physical
𝜋 ) = 𝑜0 + 𝑜1 (9)

For some quantities, other parameters such as heavy mass dependency and a dependency on a
possible mistuning of the mass step-scaling steps has been tried as well [3].

We have asserted that G(1) is equal to one at the elastic point. This can be shown from the
lattice data by performing an extrapolation to the physical point. The result of this extrapolation is

5
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Figure 6: Comparison to previous results for G (left) and ℎA1 (right).

shown in Fig. 5. It is indeed compatible with one.
In the case of G we only need to consider the ratios between successive mass step-scaling

steps. These are computed directly on every ensemble to ensure the cancellation of correlated
errors. Then the ratios are extrapolated (separately for every mass step-scaling step) to the physical
point according to eq. (8). A combined fit with additional parameters has been tried as well with
compatible results. The resulting ratios at the physical point are shown in Fig. 2.
We get a final result for G:

G𝐵𝑠→𝐷𝑠 (𝑤 = 1) =
6∏
𝑖=1

𝜎𝑖 ≈ 𝜎6
= 1.03(14) (10)

For ℎ𝐴1 we obtain

ℎ
𝐵𝑠→𝐷∗

𝑠

𝐴1
(1) = ℎ

𝐷𝑠→𝐷∗
𝑠

𝐴1
(1) ×

6∏
𝑖=1

𝜎
ℎ𝐴1
𝑖

≈ ℎ
𝐷𝑠→𝐷∗

𝑠

𝐴1
(1) × (𝜎ℎ𝐴1 )6 (11)

= 0.825(83) × (1.005(23))6 = 0.85(16). (12)

6. Discussion and conclusion

In this exploratory 𝑁 𝑓 = 2 study, we have obtained the form factors G(𝑤 = 1) = 1.03(14)
and ℎ𝐴1 (𝑤 = 1) = 0.86(16), associated with the semileptonic decays 𝐵𝑠 → 𝐷𝑠 and 𝐵𝑠 → 𝐷𝑠

∗

respectively, using the method of step-scaling in mass.
From Fig. 6, where we show a comparison to previous results, one infers that we are facing sub-

stantial statistical uncertainty. This might in part be explained by the large source-sink-separation.
Moreover, the mass step scaling method itself has, of course, a significant impact on the error of
the final result, since the ratios are all multiplied in the end. Most results, which were obtained by
projecting with GEVP eigenvalues, are compatible with results obtained by using only the source
with the largest gaussian smearing.
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We also observed that small momenta injected by twisted-boundary conditions provide a stable
extrapolation to the point of zero recoil.

Finally, as can be seen in Fig. 2, the data are not sensitive to the change in the heavy mass 𝑀ℎ𝑖𝑠.
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