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1. Introduction

The quark-gluon plasma (QGP), the high-temperature phase of bulk nuclear matter, has been
studied in ultra-relativistic heavy-ion collision (HIC) experiments at RHIC (BNL), LHC (CERN)
for many years, and will be probed after their upgrades and in future experiments such as FAIR
(GSI) and NICA (JINR), too. At vanishing baryon density the transition between the hadron gas
and the QGP takes place as a broad chiral crossover around a temperature of )pc = 156.5(1.5)MeV
at the physical point [1]. The thermodynamic properties of QGP are given in terms of its equation
of state (EoS), which has been studied extensively on the lattice in pure gauge theory (without sea
quarks) [2], or with 2+1 dynamical flavors (i.e. light quarks in the isopin limit, and a physical
strange quark) of sea quarks [3–5]; after clearing up discrepancies between early lattice calculations
due to a poorly controlled continuum limit, good agreement was achieved in (2+1)-flavor QCD.

Heavy quarks are negligible in nuclei. Instead, they are produced in hard processes during early
stages of the HIC. Future HIC experiments at larger

√
B will lead to higher temperature and copious

production of charm. Furthermore, for physics of the early universe the charm contribution to the
equation of state cannot be neglected, see e.g. Ref. [6]. Thus it is urgent to include dynamical charm
quarks in the lattice calculation of the equation of state. Heavy quarks are challenging due to the
large discretization errors associated with their mass, see e.g. the difficulty of the continuum limit
for moments of pseudoscalar charmonium correlators [7]. At ) & 2)pc the previously dominant
gluon contribution and the light or strange quark contributions die down rapidly, whereas the
contribution from charm quarks catches up as thermal scales, i.e. c) , approach its mass (MS:
<2 (<2 , # 5 = 4) = 1.2735(35) GeV [8]). Charm quarks give an important contribution to the EoS
at temperatures for which weak-coupling calculations are not yet reliable [9]. Although results in
(2+1+1)-flavor QCD (i.e. with a charm sea) have been obtained already some time ago [6], no
independent cross-check through a calculation using another discretization for the charm sea is
available yet. In this contribution we report on an ongoing (2+1+1)-flavor QCD study [10, 11] with
highly improved staggered quark (HISQ) action [12] optimized for controlling heavy-quark mass
discretization effects.

2. Lattice setup

Any lattice calculation of the EoS is computationally demanding. In the traditional approach
that we follow, i.e. the integral method, both ) > 0 and ) = 0 ensembles with high statistics are
needed at each bare gauge coupling to cancel UV divergences. We use coarse ) > 0 lattices with
aspect ratio #f/#g = 4 and temporal extents #g = 6, 8, 10, and 12; the temperature is set as
) = 1/(0#g). The data set is anchored to a set of existing, high statistics MILC ensembles [13]
at ) = 0 along the line of constant physics (LCP) with a light quark mass <; = <B/5, i.e.
<c ≈ 300 MeV in the continuum limit. We combine the HISQ action [12] with a tadpole one-
loop improved gauge action. HISQ suppresses taste exchanges and diminishes mass splittings in
the pion sector; this improves the approach to the continuum limit at low temperatures. HISQ
is $ (02)-improved at tree-level due the Naik (three-link) term, which improves scaling at high
temperatures [5], and contains a mass-dependent correction n# for the charm quark [12], which
reproduces the correct charm dispersion relation at tree-level up to $ ((0<2)4).
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V + 0<; 0<B 0<2 0, fm TU
5.400 163 × 40 0.0182 0.091 1.339 0.220 20K
5.469 243 × 32 0.01856 0.0928 1.263 0.206 19K
5.541 243 × 32 0.01718 0.859 1.157 0.192 18K
5.600 163 × 48 0.0157 0.0785 1.08 0.181 69K
5.663 243 × 32 0.01506 0.0753 0.996 0.170 28K
5.732 324 0.01394 0.0697 0.913 0.159 10K
5.800 163 × 48 0.013 0.065 0.838 0.151 99K
5.855 324 0.01216 0.0608 0.782 0.140 15K
5.925 324 0.01122 0.0561 0.716 0.130 14K
6.000 243 × 64 0.0102 0.0509 0.635 0.121 11K
6.060 324 0.00962 0.0481 0.603 0.113 38K
6.122 324 0.00896 0.0448 0.558 0.106 38K
6.180 324 0.0084 0.042 0.518 0.100 38K
6.238 324 0.00784 0.0392 0.482 0.095 40K
6.300 323 × 96 0.0074 0.037 0.44 0.089 6K
6.358 324 0.00682 0.0341 0.416 0.089 9K
6.445 324 0.00616 0.0308 0.374 0.077 15K
6.530 363 × 48 0.0056 0.028 0.338 0.070 11K
6.632 484 0.00498 0.0249 0.300 0.063 3K
6.720 483 × 144 0.0048 0.024 0.286 0.058 6K
6.875 483 × 64 0.0038 0.019 0.228 0.050 3K
7.000 643 × 192 0.00316 0.0158 0.188 0.045 6K
7.140 643 × 72 0.0029 0.0145 0.172 0.039 4K
7.285 643 × 96 0.00248 0.0124 0.148 0.034 4K

Table 1: Parameters of the calculations at zero temperature, including, the lattice gauge coupling V = 10/62
0,

quark masses, lattice spacings as well as the corresponding statistics in terms of molecular dynamics time
units (TUs).

We use the A1 scale defined in terms of static potential at ) = 0 to set the lattice spacing 0.
We use the value A1 ' 0.3106 fm [14] in this study. Strange and charm quark masses are tuned to
physical values by using masses of c,  , and the spin average of [2 and �/k. The tadpole factor
defined from the trace of the plaquette D0 =

〈
Tr *?/3

〉1/4 is determined during thermalization of
the ) = 0 ensembles. The parameters and accumulated statistics for the ) = 0 ensembles are shown
in Table 1. Corresponding temperatures and the statistics for the ) > 0 ensembles are shown in
Table 2. We cover a window of ) ∈ [149, 967]MeV with #g = 6 and ) ∈ [136, 725]MeV with
#g = 8.

3. Trace anomaly

In the standard approach the EoS is obtained from the trace of the energy-momentum tensor
(EMT), Θ`` = Y − 3?, where Y or ? are energy density or pressure [15]. Θ`` is related to the
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V #g = 6 #g = 8 #g = 10 #g = 12
) TU ) TU ) TU ) TU

5.400 149 50K
5.469 160 50K
5.541 171 50K
5.600 182 50K 136 114K
5.663 193 50K 145 74K
5.732 207 50K 155 86K
5.800 218 50K 163 81K 131 40K
5.855 235 50K 176 105K 140 42K
5.925 253 50K 190 105K 152 42K
6.000 272 50K 204 105K 163 40K 136 39K
6.060 291 50K 218 99K 175 42K 145 21K
6.122 310 50K 233 101K 186 42K 155 21K
6.180 329 50K 247 99K 197 40K 165 32K
6.238 346 50K 260 96K 208 13K 173 27K
6.300 369 50K 277 98K 222 84K 184 28K
6.358 391 50K 294 96K 235 196 4K
6.445 427 50K 320 96K 256 214 4K
6.530 470 50K 352 99K 282 59K 235 10K
6.632 522 50K 391 96K 313 261
6.720 567 50K 425 100K 340 10K 284 10K
6.875 658 50K 493 108K 395 329 11K
7.000 731 40K 548 110K 438 20K 366
7.140 843 40K 632 11K 506 19K 422 2K
7.285 967 40K 725 11K 580 17K 483 2K

Table 2: Statistics of ) > 0 calculations for different #g in terms of molecular dynamics time units (TUs).
Under each #g the first of the two columns shows the temperature ) in MeV and the second the number of
TUs.

partition function as
Θ``

)4 = −)
+

3 ln /
3 ln 0

, / =

∫
�*�k̄�k 4−(6−( 5 . (1)

The temperature-independent divergences of any individual contribution - to Θ`` can be removed
by subtracting the vacuum result for this operator - , i.e.

Δ(-) = 〈-〉g − 〈-〉0 . (2)

The vacuum-subtracted trace anomaly is given in terms of the basic ingredients of the action,
Θ``

)4 = −'V (V)
[
Δ((6) + 'D (V)Δ

(
3(6

3D0

)]
+ 'V (V)'<B

(V)
[
2<;Δ(k̄;k;) + <BΔ(k̄BkB)

]
+ 'V (V)'<2

(V)
[
<2Δ(k̄2k2) + 'Y# (V)Δ

(
k̄2

[
3"2

3Y#

]
k2

)]
, (3)
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after the lattice spacing derivatives have been rephrased in terms of V functions and action parameter
derivatives. Changes of the lattice spacing and the action parameters along the LCP are controlled
by lattice V-functions:

'V (V) = )
dV
d)

= −0dV
d0

= (A1/0) (V)
(
d(A1/0) (V)

dV

)−1
, (4)

'<@
(V) = 1

0<@ (V)
d0<@ (V)

dV
for @ = B, 2 , (5)

'D (V) = V
dD0(V)

dV
, 'n (V) =

dn# (V)
dV

. (6)

We have determined the V-functions by fitting the data to the following Allton-type Ansätze [16].
For the lattice spacing:

A1

0
(V) = 2

(0)
A 5 (V) + 2 (2)A (10/V) 5 3(V)

1 + 3 (2)A (10/V) 5 2(V)
, (7)

and for the strange or charm quark masses (@ = B, 2):

0<@ (V) =
2
(0)
@ 5 (V) + 2 (2)@ (10/V) 5 3(V)

1 + 3 (2)@ (10/V) 5 2(V)

(
2010

V

) 4
9

. (8)

Here 5 (V) is the universal two-loop V-function for # 5 massless flavors

5 (V) =
(
1010

V

)−11/(212
0)

exp (−V/2010). (9)

The obvious problem is that the charm quark mass can neither be neglected nor assumed to be very
large compared to the typical QCD scale. Therefore, we can only set # 5 = 3 or # 5 = 4 and check
for possible differences in the resulting parameterization of A1 and the running quark masses. We
used # 5 = 3 in the final result but checked that using the # 5 = 4 the parameterization in Eqs. (7)
and (8) would give statistically consistent results (although with different parameters). To obtain
the V derivatives in Eq. (5), we fit D0 with D0(V) = 21 + 224

−31V and n# with a polynomial in V.
To obtain the pressure we use thermodynamic identity and write

?())
)4 =

?0

)4
0
+

∫ )

)0

3) ′
Θ``

) ′5
, (10)

where ?0 is the pressure at some low reference temperature )0. This is the integral method for
calculating the pressure [15]. If we choose )0 well below the crossover temperature we can use
the hadron resonance gas (HRG) model to evaluate ?0. In our calculation we use the HRG model
corresponding to the pion mass of 300 MeV, which also takes into account the taste splitting in the
pion sector [5].

4. Numerical results

The gauge configurations are generated with the RHMC algorithm [17]. At ) = 0 we save
lattices every 5 or 6 and at) > 0 every 10 molecular dynamics time units (TU). The statistics for the
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Figure 1: The trace anomaly as function of the temperature calculated on #g = 6, 8, 10 and 12 lattices.

#g = 6 or 8 ensembles is reaching for most of them 50 thousand or 100 thousand TUs, respectively.
In Fig. 1 we show our results for the trace anomaly for different #g . As one can see from the
figures we have accurate results for the trace anomaly on #g = 6 and #g = 8 lattices. On the other
hand there are large fluctuations in the results obtained for #g = 10 and 12. Nonetheless, there is
no apparent cutoff dependence of the trace anomaly for #g > 6. Since we have accurate results for
the trace anomaly for #g = 6 and 8 we interpolate them with splines and then evaluate the pressure
via the integral method as discussed above. In Fig. 2 we compare the pressure in (2+1+1)-flavor
QCD along the line of constant physics <c ≈ 300 MeV with the pressure in (2+1)-flavor QCD
along the line of constant physics <c ≈ 160 MeV [5]. Note that due to the difference in the pion
mass for #g = 8 the (2+1+1)-flavor pressure is below the (2+1)-flavor pressure at low temperatures,
) . 300 MeV, where the contribution of the charm quark is still negligible. For #g = 6 we do not
see significant differences since the cutoff effects are more prominent than the quark mass effects.

5. Conclusions

We have extended the calculation of the equation of state in (2+1+1)-flavor QCD with HISQ
action and concluded the calculation on the coarse lattices. We have generated several new () = 0
and ) > 0) ensembles to achieve better coverage of the temperature range 130 - 1000 MeV and
increased the statistics on most of the ensembles. We have reached lattice spacings down to
0.034 fm, which corresponds to 967 MeV for #g = 6. Calculations on #g = 6 and 8 lattices
shows that there is a significant contribution from charm quarks to the pressure for ) > 300 MeV.
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Figure 2: Pressure as function of temperature on #g = 6 (left) and 8 (right) lattices for (2+1)- and (2+1+1)-
flavor QCD. The errors are purely statistical. In the continuum limit, the (2+1)-flavor or (2+1+1)-flavor QCD
results correspond to pion masses of <c ≈ 160 MeV or 300 MeV, respectively.

However, substantial increase in the statistics on the finer ensembles (#g = 10, 12) will be needed
to accomplish a robust continuum extrapolation.
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