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The tensor renormalization group is a promising numerical method used to study lattice statistical
field theories. However, this approach is computationally expensive in 2+1 and 3+1 dimensions.
Here we use tensor renormalization group methods to study an effective three-dimensional Z3

model for the heavy-quark, high-temperature, strong-coupling limit of single-flavor 3+1 dimen-
sional quantum chromodynamics. Our results are cross-checked using the worm Monte Carlo
algorithm. We present the phase diagram of the model through the measurement of the Polyakov
loop, the nearest-neighbor Polyakov loop correlator, and their susceptibilities. The tensor renor-
malization group results are in good agreement with the literature.
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1. Introduction

Tensor-network methods provide a tool to approximately coarse-grain a classical partition
function. Moreover, in certain cases, the method is immune to the sign problem, since there is
no probabilistic sampling involved. Here we apply two tensor methods—the higher-order tensor
renormalization group (HOTRG) [1], and the the triad tensor renormalization group (TTRG) [2]—
in conjunction with the worm Monte Carlo algorithm [3], to study an effective theory for one-flavor,
finite-density, 3+1-dimensional quantum chromodynamics (QCD). The effective theory has a sign
problem in the original formulation, however this can be overcome with a change of variables,
making the model ideal to test the tensor methods against the Monte Carlo results. We first derive
the effective theory, then provide a tensor representation of the theory, and finally report our results.

2. Single-flavor, finite-density QCD

The starting action is the standard lattice Wilson gauge action, and Wilson single-flavor fermion
action. The action has two parts, S = S g + S f , with the gauge action given by

S g = −
β

3

N∑
x=1

 a
at

3∑
i=1

Re[Tr
[
Ux,i4

]
] +

at

a

3∑
i< j=1

Re[Tr
[
Ux,i j

]
]

 (1)

and the fermion action by

S f =
∑
x,y

ψ̄xMxyψy, M = 1 − κ
at

a
Hs − κHt (2)

with the spatial and temporal hoppings

Hs =

3∑
i=1

(
T +

i + T−i
)
, Ht = eµ̃at T +

4 + e−µ̃at T−4 (3)

and

(T±ν )xy = (1 ± γν)Ux,±νδy,x±ν̂. (4)

Here, the gauge coupling enters through β = 6/g2 and we identify κ as the fermion hopping pa-
rameter. The chemical potential is µ̃, and a and at are the spatial and temporal lattice spacings,
respectively. In anticipation of deriving the effective theory, we define the temperature as given by
the inverse physical extent of the lattice,

T =
1

Ntat
, (5)

with Nt the number of lattice sites in the temporal direction. We work on a finite lattice with anti-
periodic boundary conditions in the temporal direction, and periodic boundary conditions in the
spatial directions.
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3. The effective action

The effective action we study corresponds to a particular limiting case. To derive it we follow
Ref. [4] closely. We consider the strong-coupling, high-temperature limit, where we take the tem-
poral extent of the lattice very short—in this case we set Nt = 1—and shrink the temporal lattice
spacing. This corresponds to

β � 1, at � 1. (6)

In addition we take the large-chemical-potential, large-quark-mass limit, which in the action corre-
sponds to

µ̃ � 1, κ � 1. (7)

In S g spatial plaquettes are suppressed by a factor of a2
t relative to the temporal plaquettes, and in

S f spatial hopping is suppressed. Since the confinement-deconfinement transition is believed to
be related to center-symmetry breaking, we replace the S U(3) group elements by elements of the
center of the group, Z3, which is an Abelian group. For S g we find

S g → −
β

2at

∑
x

3∑
ν=1

P∗xPx+ν̂ + c.c. (8)

and for S f

S f → −κ
∑

x

[
eµPx + e−µP∗x

]
(9)

with Px ∈ Z3, which can be interpreted as a Polyakov loop in the short, compactified temporal
direction, and µ = atµ̃. This results in an effective action

S eff = −
∑

x

τ 3∑
ν=1

(
P∗xPx+ν̂ + c.c.

)
+

(
ηPx + η̄P∗x

) (10)

with τ ≡ β/2at and η ≡ κeµ and η̄ = κe−µ. A graphical illustration of the Polyakov loop variables
on the lattice can be seen on the left-hand side of Fig. 1. The effective theory lives in three Eu-
clidean dimensions, and is to be interpreted as a statistical theory, in equilibrium, in three spatial
dimensions.

4. The tensor network

The partition function for the effective action describing this theory of interacting Z3 “spins”
is given by,

Z =
∑
{P}

e−S eff , (11)
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Figure 1: (left) An illustration of the original degrees of freedom. At each site there is a Z3 element (a
Polyakov loop) which interacts with its nearest neighbors. (right) In the Fourier basis, there are “charges”
and “currents” on the sites, and links, respectively, which must obey a conservation-law constraint at each
site.

where the sum,
∑
{P}, means a sum over all possible configurations of the Z3 variables. This can be

recast to a theory of “currents” and “charges” by Fourier expansion of the elementary Boltzmann
weights [5],

exp(τ[PxP∗x+ν̂ + c.c.]) = C
∑

nx,ν∈{−1,0,1}

B|nx,ν |(PxP∗x+ν̂)
nx,ν (12)

and

exp(ηPx + η̄P∗x) =
∑

mx∈{−1,0,1}

Vmx Pmx
x (13)

where B and V can be found by inverting the above. These expansions allow the original Z3

variables to be summed over, leaving only the n and m integer variables as the new degrees of
freedom. The resulting partition function is written as,

Z =
∑
{n}

∑
{m}

∏
x,ν

Bnx,ν(τ)


∏

x

Vmx(η, η̄)∆(3)( jx)

 , (14)

with jx =
∑3
ν=1(nx,ν − nx−ν̂,ν) + mx, and ∆(3)( jx) = δ jxmod3,0. A graphical illustration of the new

degrees of freedom on the lattice can be seen in Fig. 1 on the right-hand side.
A tensor network can be built from the tensor,

T (x)
nx−1̂,1nx,1nx−2̂,2nx,2nx−3̂,3nx,3 =

√
Bnx−1̂,1

Bnx,1 Bnx−2̂,2
Bnx,2 Bnx−3̂,3

Bnx,3(τ)Vmx(η, η̄)∆(3)( jx) (15)

and the partition function written as a tensor trace

Z = Tr

∏
x

T (x)

 . (16)
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Figure 2: A graphical illustration of the decomposition of the fundamental six-indexed tensor into four triad
tensors.

We calculate the average Polyakov loop and average nearest-neighbor correlator, and their suscep-
tibilities,

〈P〉 =
1
V
∂ ln Z
∂η

, 〈E〉 = −
1
V
∂ ln Z
∂τ

(17)

χP = V(〈P2〉 − 〈P〉2), χE = V(〈E2〉 − 〈E〉2). (18)

We do this using “impure” tensors [6, 7], and finite differences of the logarithm of the partition
function.

5. Numerical methods

Using T from Eq. (15) we contract the tensor network using the HOTRG. This can be done
in the original HOTRG prescription [1], or with additional approximations using the TTRG [2].
Within the TTRG, The T tensor can be decomposed into four, three-indexed tensors called triads,

Ti jklmn =
∑
α,β,γ

Ai jαBαkβCβlγDγmn. (19)

A graphical representation of the triad decomposition can be seen in Fig. 2. The tensor network
contraction with these can be done efficiently. In addition to the two tensor methods, we also use
the worm Monte Carlo method [3, 5]. We report results using the original HOTRG, triad HOTRG,
and worm Monte Carlo.

6. Results

We calculate the observables mentioned in Sec. 4 using three algorithms: the HOTRG, the
TTRG and worm Monte Carlo, and compare them in various circumstances. In Fig. 3 we calculate
the average nearest-neighbor Polyakov loop correlator at κ = 0. We do this using the TTRG with
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Figure 3: (left) The average nearest-neighbor Polyakov loop correlator evaluated at κ = 0 as a function of τ
using the TTRG with D = 40 states. Here multiple volumes are shown to demonstrate convergence. (right)
The average Polakov loop as a function of τ, evaluated at κ = 1 × 10−5 using the TTRG with D = 40 states,
at a volume of V = 10243.
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Figure 4: (left) The average Polyakov loop evaluated at fixed τ = 0.1, and κ = 0.05 as a function of µ. Three
algorithms are compared: the HOTRG, the TTRG, and the worm Monte Carlo. We find good agreement
between all three methods, and the number of states used in each tensor method is in the legend. (right) A
heat map of the average Polyakov loop in the µ-τ plane, evaluated at κ = 0.05, using the HOTRG method
with D = 9 states.

a bond dimension (D) equal to 40 for several volumes to demonstrate convergence. On the right-
hand side of Fig. 3 we show the average Polyakov loop at a small value of κ = 1× 10−5, calculated
using the TTRG using D = 40. In both figures we see evidence of a phase transition.

In Fig. 4 we calculated the average Polyakov loop at finite τ and κ, with τ = 0.1, and κ = 0.05,
for a range of µ values. On the left-hand side we see a comparison between the three methods, with
all three showing good agreement. On the right-hand side we plot a heat-map visualization of the
average Polyakov loop in the τ-µ plane, at κ = 0.05. This heat-map data was generated using the
HOTRG with D = 9.

Figure 5 shows the Polyakov loop susceptibility. On the left-hand side we again have a com-
parison between the three numerical methods, and the three showing good agreement, except at
small values of µ where all three methods are somewhat noisy. On the right-hand side we plot
a heat-map of the susceptibility in the τ-µ plane at κ = 0.05. This data was generated using the
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Figure 5: (left) The Polyakov loop susceptibility evaluated at τ = 0.1, κ = 0.05 as a function of µ. Here
three algorithms are compared: the HOTRG, the TTRG, and the worm Monte Carlo. We find good agreement
between the three methods, with noise among all three at small µ. The number of states for the two tensor
methods is found in the legend. (right) A heat-map of the Polyakov loop susceptibility in the µ-τ plane
evaluate at κ = 0.05 using the HOTRG method with D = 9 states.

HOTRG with D = 9.

7. Conclusion

We have studied 3+1-dimensional, single-flavor, finite-density QCD in the strong-coupling,
high-temperature limit where the model undergoes dimensional reduction to a three-dimensional
Abelian spin model. We studied this effective theory using three different methods: the triad tensor
renormalization group, the higher-order tensor renormalization group, and the worm Monte Carlo
sampling method. Where calculations were clean, the three methods agree with each other well.
We found the tensor methods were able to reproduce known features of the phase diagram well;
however, calculations at very small values of κ, and small values of µ were noisy and unreliable in
all three methods.
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