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We study the latent heat and the pressure gap between the hot and cold phases at the first-order
transition temperature T = Tc of SU(3) Yang-Mills theory, using the small flow-time expansion
(SFtX) method based on the gradient flow. We first examine alternative procedures in the SFtX
method — the order of the continuum and vanishing flow-time extrapolations. We confirm that
the final results adopting the two orders, as well as other alternatives in which the perturbative
order of the matching coefficients and the renormalization scale of the flow scheme are varied,
are all consistent with each other. We also confirm ∆p is consistent with zero, as expected from
the dynamical balance of two phases at Tc . For the latent heat in the continuum limit, we find
∆ε/T4 = 1.117(40) for the spatial volume L3 corresponding to the aspect ratio Ns/Nt = TcL = 8
and 1.349(38) for Ns/Nt = 6. From hysteresis curves, we show that the entropy density in the hot
phase is sensitive to the spatial volume, while that in the confined phase is insensitive.
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1. SFtX method based on the gradient flow

The deconfining phase transition of finite temperature SU(3) Yang-Mills theory provides us
with a good testing ground for developing numerical techniques to investigate first order phase
transitions in high-density and/or many-flavor QCD. In this report, we study it adopting the small
flow time expansion (SFtX) method [1, 2] based on the gradient flow[3–6]. Using the fact that the
fields at flow time t > 0 are free from the ultraviolet divergences and short-distance singularities, the
SFtX method provides us with a general method to correctly calculate any renormalized observables
on the lattice. The basic idea of the SFtX method is shown in Fig. 1: Because we can make any
observable strictly finite by replacing the field variables in the observable with their flowed fields
at t > 0, we can calculate their non-perturbative values by simply evaluating their corresponding
operator on the lattice. Here, unlike the cases of conventional lattice evaluation, we do not need to
carry out numerical renormalization nor removal of contamination from unwanted operators due to
lattice violation of relevant symmetry. Though the flowed observable is not the observable itself,
we can get the latter by extrapolating the result of the flowed observable to the vanishing flow time
limit t → 0. The SFtX method has been successfully applied to evaluate thermodynamic quantities
in the Yang-Mills gauge theory [7–10] and in QCD with 2+ 1 flavors of dynamical quarks [11–14].

In this study, we adopt the SFtX method to calculate the latent heat ∆ε and pressure gap ∆p
at the first order phase transition of the SU(3) Yang-Mills theory [15]. Performing simulations at
several lattice spacings and spatial volumes, we carry out the continuum extrapolation a → 0 and
study the finite volume effect.

Another objective of this study is to test several alternative procedures for the SFtX method. In
particular, we study the order of the double extrapolation (a, t) → 0 in the SFtX method: method 1
(t → 0 then a → 0) and method 2 (a → 0 then t → 0). See Fig. 1. At (a, t) , 0, we have
lattice artifacts of O(a2/t), which makes a naive t → 0 extrapolation difficult at a , 0. Though
these artifacts are removed when we take a → 0 first, a reliable a → 0 extrapolation is in practice

finite & physically well-defined

Directly evaluate corresponding operator on the lattice.
No renormalizations/mixings required.

continuum
t = 0

continuum
t > 0
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Figure 1: Basic idea of the small flow-time expansion (SFtX) method [1].
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difficult at vary small t where O(a2/t) dominates the data. We thus have to carry out the double
extrapolation avoiding regions where the O(a2/t) artifacts are large. On the other hand, when
the O(a2/t) artifacts are avoided, the final results should be insensitive to the order of the two
extrapolations [11]. The consistency of the methods 1 and 2 provides us with a good test of the
numerical procedure to avoid the O(a2/t) lattice artifacts.

2. Setup

Our flow equation is given by

∂tBa
µ (t, x) = DνGa

νµ(t, x) ≡ ∂νGa
νµ(t, x) + f abcBb

ν (t, x)G
c
νµ(t, x) (1)

with Ba
µ (0, x) = Aa

µ(x), where Ba
µ (t, x) is the flowed gauge field and Ga

µν(t, x) ≡ ∂µBa
ν (t, x) −

∂νBa
µ (t, x) + f abcBb

µ (t, x)B
c
ν (t, x) is the flowed field strength [4]. The energy-momentum tensor

(EMT) is then given by

TR
µν(x) = lim

t→0

{
c1(t)Uµν(t, x) + 4c2(t) δµν [E(t, x) − 〈E(t, x)〉0]

}
, (2)

Uµν(t, x) ≡ Ga
µρ(t, x)G

a
νρ(t, x) −

1
4
δµνGa

ρσ(t, x)G
a
ρσ(t, x), E(t, x) ≡

1
4

Ga
µν(t, x)G

a
µν(t, x),

where 〈· · · 〉0 is the zero temperature expectation value [1]. The matching coefficients c1(t) and
c2(t) are expanded in perturbation theory as

c1(t) =
1
g2

∞∑̀
=0

k(`)1 (µ, t)
[

g2

(4π)2

] `
, c2(t) =

1
g2

∞∑̀
=1

k(`)2 (µ, t)
[

g2

(4π)2

] `
, (3)

where g = g(µ) is the MS running coupling and µ is the renormalization scale of the flow scheme.
The tree-level term is k(0)1 = 1, and k(1)i and k(2)i are one and two loop contributions given

in Refs. [1] and [16], respectively.1 In pure gauge Yang-Mills theories, k(`+1)
2 can be deduced by

`-loop coefficients using the trace anomaly [1]. A concrete form for k(3)2 is given in Ref. [10]. In this
report, we show results adopting NNLO matching coefficients keeping terms up to k(2)1 for c1(t) and
up to k(3)2 for c2(t). For the renormalization scale of the flow scheme, we adopt µ0(t) = 1/

√
2teγE

with γE the Euler-Mascheroni constant proposed in Ref. [16]. This choice is reported to improve
the signal of the SFtX method over the conventional choice µd(t) = 1/

√
8t [14].

We study the energy density and the pressure obtained from the EMT as

ε = −
〈
TR

00(x)
〉
, p =

1
3

∑
i=1,2,3

〈TR
ii (x)〉. (4)

We note that the trace anomaly ε − 3p is computed by the operator E(t, x) with the matching
coefficient c2(t), while the entropy density ε + p is computed by the operator Uµν(t, x) with c1(t).
We thus calculate these conventional combinations too.

1 Note that our convention for c2(t) differs from that of Refs. [16]. Our c2(t) corresponds to c2(t) + (1/4)c1(t)
in Ref. [16].
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Figure 2: Double extrapolation of the latent heat by the method 1. Left: t → 0 extrapolation of ∆ε/T4,
∆(ε + p)/T4 and ∆(ε − 3p)/T4 obtained on the 1283 × 16 lattice. Right: a → 0 extrapolation of the results
at t = 0 on Ns/Nt = 8 lattices. [15]

We perform simulations with the standard Wilson action at several β’s around the transition
point βc on lattices with Nt = 8, 12 and 16 with spatial lattice sizes Ns corresponding to the aspect
ratio Ns/Nt = 6 and 8. For Nt = 12 we also simulate Ns = 48 and 64 lattices. Because T is adjusted
to Tc in our study, the lattice spacing a = 1/(NtTc) is fixed by Nt , and the spatial volume in physical
units, L3 = (Nsa)3 = N3

s /(NtTc)
3, is fixed by the aspect ratio Ns/Nt = TcL.

We define the transition point βc as the peak position of the Polyakov loop susceptibility
χΩ = N3

s (〈Ω
2〉 − 〈Ω〉2). Near the first order transition point, we separate the configurations into the

hot (deconfined) and cold (confined) phases using the spatially averaged Polyakov loopΩ. See [15]
for details. After the phase separation, we carry out the gradient flow on each of the configurations
to measure flowed operators. In each of the hot and cold phases, we then combine the expectation
values of flowed operators at different simulation points by the multipoint reweighting method, to
obtain the values just at the transition point β = βc (i.e. T = Tc), and calculate the gaps ∆ε/T4,
∆(ε − 3p)/T4, ∆(ε + p)/T4 and ∆p/T4 between the hot and cold phases at the first-order transition
temperature Tc. When ∆p = 0 as expected from the dynamical balance between the two phases at
Tc, the latent heats ∆ε/T4, ∆(ε − 3p)/T4 and ∆(ε + p)/T4 should coincide with each other.

3. Results

Figure 2 shows our determination of the latent heat by the method 1. The left panel is the t → 0
extrapolation of ∆ε/T4, ∆(ε + p)/T4, and ∆(ε − 3p)/T4 at fixed a, obtained on the 1283 × 16 lattice
as an example. The rapid change of data at t/a2 <

∼ 0.5 is due to the O(a2/t) lattice artifacts. Note
that, when we remove the small and large t regions where O(a2/t) and O(t2) effects are appreciable,
the results of ∆ε/T4, ∆(ε + p)/T4 and ∆(ε − 3p)/T4 are all consistent with each other, meaning
that ∆p is consistent with zero already at (a, t) , 0. Selecting a linear window in which the data is
well linear, we perform linear extrapolations to t = 0, shown by straight lines and the symbols at
t = 0 in the left panel. See Ref. [15] for our criterion to choose an optimum window. We confirm
that the results are consistent within statistical errors under a variation of fitting windows. We then
perform a → 0 extrapolation at each fixed spatial volume, as shown in the right panel of Fig. 2 for
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Figure 3: Double extrapolation of the latent heat and the pressure gap by the method 2. Left: a → 0
extrapolation of ∆(ε + p)/T4 at each t in physical units obtained on lattices with Ns/Nt = 8. Results of
the a → 0 extrapolation are shown by the thick orange curve, with which we perform t → 0 extrapolation
to get the physical value of ∆(ε + p). Right: Final results of t → 0 extrapolations using the results in the
continuum limit, with various fit ranges denoted by the numbers 1–5 on the horizontal axis. The filled and
open symbols are for Ns/Nt = 8 and 6, respectively. Results of the method 1 are also shown at the left end.
See Ref. [15] for details.

the case of the spatial volume corresponding to Ns/Nt = 8. The horizontal axis is 1/N2
t = (aTc)

2.
The linear lines with the symbols at a = 0 are the results of a → 0 extrapolation using data at three
lattice spacings corresponding to Nt = 8, 12 and 16.

Figure 3 shows our results of latent heat and pressure gap by the method 2. We first make
a → 0 extrapolation at each t in physical units using data at three a corresponding to Nt = 8,
12 and 16, fixing Ns/Nt to take the finite size effect into account. The result of the linear 1/N2

t

extrapolation for ∆(ε + p)/T4 at Ns/Nt = 8 is shown by the thick orange curve in the left panel of
Fig. 3, with thin orange curves for the statistical error. We then perform t → 0 extrapolation of the
orange curve, selecting several candidates of the linear window. See Ref. [15] for details. The right
panel of Fig. 3 show the fit range dependence of the results of t → 0 extrapolation. We also show
the final results of method 1 at the left end of the plot. We find that the results adopting different fit
ranges as well as those obtained by the method 1 are vary consistent with each other.

The results of ∆p by direct calculation from EMT are given at the bottom of the right panel
of Fig. 3. We find that the values of ∆p are only about 1% of the latent heat and the results of
the methods 1 and 2 are consistent with each other. Due to correlation between ∆(ε + p)/T4 and
∆(ε − 3p)/T4, the jackknife statistical errors for ∆p turned out to be quite small in comparison to
the errors of the latent heat. With the small errors, the mean values of ∆p deviate from zero by
about 2-3 σ statistical errors. We find that these nonvanishing values in the t → 0 limit originate
solely from the data at Nt = 8 used in the continuum extrapolation: We find that the values of ∆p
deviate from zero at Nt = 8, while those at Nt = 12 and 16 are consistent with zero in the linear
windows for the t → 0 extrapolation. When we remove the data on the coarsest lattice Nt = 8, we
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Figure 4: (ε + p)/T4 by the SFtX method calculated using configurations in the hot phase (red), the cold
phase (blue) and all configurations without the phase separation (green), obtained on the 483 × 8 (cross) and
643 × 8 (circle) lattices. [15]

obtain ∆p consistent with zero. Thus, taking account of the systematic error due to the continuum
extrapolation which is larger than the statistical error for the case of ∆p, we conclude that the
pressure gap ∆p is consistent with zero.

For the latent heat, adopting the results of the method 2 as central values, we obtain ∆ε/T4 =

1.117(40) for the spatial volume corresponding to Ns/Nt = 8, and 1.349(38) for Ns/Nt = 6.
Systematic errors estimated from the differences between the methods 1 and 2 as well as among
different fit ranges are smaller than the statistical errors quoted here.

4. Hysteresis of entropy density around Tc

In the previous section, we find that the latent heat is clearly dependent on the spatial volume
of the system at Ns/Nt = 6 and 8. At a first-order phase transition point, however, because the
correlation length does not diverge, the spatial volume dependence should be mild when the volume
is sufficiently large. To find the origin of the spatial volume dependence in our latent heat, we study
the entropy density (ε + p)/T4 separately in the hot and cold phases at temperatures around Tc using
the multipoint reweighting method.

The results of (ε + p)/T4 obtained on 483 × 8 and 643 × 8 lattices are plotted by the cross and
circle symbols in Fig. 4. Results at t/a2 = 1.4 are shown — the results in the t → 0 limit are about
the same with slightly larger errors. The red symbols are for the results in the hot phase and the blue
symbols in the cold phase, while the green symbols show the results without the phase separation.
The horizontal axis is the temperature T = 1/(Nta) normalized by Tc, where the relation between
a and β is determined by the critical point βc as function of Nt [17].

We find that the spatial volume dependence appears only in the (metastable) hot phase around
Tc, while no apparent volume dependence is visible in the cold phase. We thus conclude that the
spatial volume dependence of the latent heat is due to that in the contribution of the hot phase.
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From this figure, we also find that latent heat is sensitive to the value of the critical point βc. A
careful determination is required for βc.

Note that a clear identification of the spatial volume effect is enabled by the small errors by
the SFtX method. In Ref. [15], we show a corresponding plot by the derivative method using the
same configurations, in which the errors are much larger. The small errors for the energy density
and pressure by the SFtX method are in part due to the simpleness of the measurement procedure
for the energy density and pressure — in contrast to the cases of conventional integral or derivative
methods, information of nonperturbative beta functions or Karsch coefficients are not needed in the
SFtX method, and also due to the smearing nature of the gradient flow which naturally suppresses
statistical fluctuations.

5. Conclusions

We carried out a series of systematic simulations of SU(3) Yang-Mills theory including those at
three lattice spacings and two spatial volumes, around the transition temperature Tc, and calculated
the energy-momentum tensor applying the small flow-time expansion (SFtX) method based on the
gradient flow. We fine-tuned the temperature to Tc by the multipoint reweighting method, and
calculated the energy density and the pressure from the energy-momentum tensor separately in
metastable hot (deconfined) and cold (confined) phases just at Tc, to calculate the latent heat and
the pressure gap.

Using the systematic data at various lattice spacings, we first examined the two alternatives
for the double extrapolation (a, t) → (0, 0) in the SFtX method — method 1 (first t → 0 and then
a → 0) and method 2 (first a → 0 and then t → 0). When the O(a2/t) lattice artifacts are correctly
avoided, the final results of the methods 1 and 2 should agree with each other. We found that the
results of the latent heat and the pressure gap adopting the methods 1 and 2 agree well with each
other. In Ref. [15], we have also tested the influence of the truncation of the perturbative series for
the matching coefficients by repeating the calculations with the NLO matching coefficients, and also
that due to the choice of the renormalization scale µ by repeating the analyses with the conventional
choice µd = 1/

√
8t. We confirmed that the final results with these alternative procedures are all

consistent with each other, while the choice µ0 improves linear windows and the use of NNLO
matching coefficients improves the signal of the latent heat in the sense that the pressure gap is more
clearly suppressed [15]. These results ensure our numerical procedures for the SFtX method.

The final results for the pressure gap ∆p between the hot and cold phases turned out to be
consistent with zero, as expected from the dynamical balance of two phases at Tc. For the latent
heat, we obtained ∆ε/T4 = 1.117 ± 0.040 for the spatial volume L3 = (Ns/Nt )

3/T3
c corresponding

to the aspect ratio Ns/Nt = 8, and 1.349 ± 0.038 for Ns/Nt = 6. From a study of hysteresis curves
around Tc, we found that this spatial volume dependence is caused by that of the observables in the
metastable hot phase. The clear volume dependence of the latent heat calls for a study on larger
spatial volumes with high statistics. Importance of large spatial volume was emphasized also in a
recent study of finite size scaling in QCD with heavy quarks [18].
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